膜構造の畳み込みに関する折紙的アプローチに関する基礎的研究

渡邊尚彦*

川口健一**

開閉式膜屋根構造等,展開式膜構造に用いられる折り畳みパターンの設計には折紙的アプロー チが役立つ.折紙的アプローチでは膜のせん断変形を無視し曲げ変形を折線に集中させた幾 何学を仮定する.本研究では板の固有曲げモードをヒントとして折りモードを得,実際に折り 畳むことのできる「可折条件」を考慮した折線の調整法を示し,畳込み経路解析を行う,とい う各手法を提案する.

梗 概

1 はじめに

面的な広がりを持つ構造物を畳み込む,或いは畳み込ま れた構造物を展開するという手法は建物の合理的な施工, 解体,展開型・可変形状型構造の開発などの分野で様々な 応用が考えられてきている[1].宇宙工学の分野では宇宙 展開型アンテナ,太陽電池パネル,ソーラーセイルなどへ の応用を目指し,多くの畳み込みパターンが提案されてい る [2][3][4][5][6].本研究は平面材の折り畳みパターンの構 造を明らかにするため「折紙的アプローチ」の有用性に着 目し,折りの数理に関して得られている成果を膜構造の折 り畳みに応用しようとするものである.実際の膜材料はせ ん断変形,曲げ変形,ねじれ変形を伴うが,本研究では問 題を明確化するため,これらの変形は生じないものとし, 膜の幾何学的変化を折線により接続された剛体的平面によ り生じるものと仮定する.提案する解析の主な流れは (1) 板の固有曲げモードから折線を抽出し折面化する手法 の提案

(2) 実際に可折条件を満たすような折線を調整する手法の 開発

(3)得られた折線を基に剛体的畳込み経路解析を行うというものである.(1)はできるだけ恣意性を排した方法で平面の本来持っている曲げ変形モードを歪みエネルギーの小さい順に得,それをもとに主要な折線を得るというものである.(2)は得られた折線が実際に折り畳み可能かを判定する方法を示し,可折でない場合折線を補足・削除・座標移動を施すことで実際に折り畳み可能な折線構造を得るというものである.(3)は不伸長変位解析を面の折り畳みに適用するというものである.

なお本論文で「折面化」とは,曲げモードなどの曲面を 「折線のつけられた面」として近似する際に必要な折線の 一部分を得る作業を表す.ただし,そこで得られる折線は 可折なものであるとは限らない.また「可折面」とは実際 に可折条件を満たすような折線のつけられた平面のことで ある.以降この定義に従う.以下に各部分の手法について 説明する.

2 折面化

面の自然な折線を得るために座屈波形がヒントにされる ことがある.三浦らは「ミウラ折り」を薄肉円筒シェルに 現れるダイヤモンド座屈波形をヒントに得,板のElastica 問題の解としての結果も得ている.[7][8][9][10]円筒シェ ルのねじり荷重作用時に現れる座屈波形もチューブの折畳 み時の折線を得るためのヒントとされている[11].しかし 本論文では荷重条件に依存しない面の純粋な曲がり易さを 表す形を得るために弾性剛性マトリクス*K_E*のみを用いて

$$[\mathbf{K}_{\mathbf{E}} - \lambda \mathbf{I}] \mathbf{u} = \mathbf{0} \tag{1}$$

によって固有曲げモードuを得ることとする.固有値が小 さいほど対応する曲げモードの歪みエネルギーは小さい.

ここで得られた曲面は直観的に構成される折線を想起さ せるものもあるが,そうでない場合に曲げの偏在情報から 折線に変換する一般性のある方法が必要とされる.本研究 では,曲面を可展的な区分的多角形の集合として直接近似 するのは困難であるが曲線であれば折線として近似するこ とが比較的容易であることに着目し,曲面を x 軸 y 軸に 平行な線で切った断面の曲線の極値点間を線形補間すると いう作業を繰り返す方法によって近似的折面を得ることと する.

3 可折条件

面の折りの幾何学的性質に関して「平坦可折条件」「剛体可折条件」が知られている「平坦折り」とは,折線情報が与えられている平面がもし平坦に折り畳めるならば成り 立つべき山谷線の位置情報を扱ったもので前川定理,川崎 定理をはじめその一般化がなされている[12][13][14][15]. 一方「剛体折り」とは各面がプレートで辺がヒンジとして モデル化されるような区分的多角形の集合体が,与えられ た山谷線情報から各面が伸びや曲げを生じずに剛体的変 位をしうるかという問題を扱うものであり,Gauss 写像を 用いた検討や機構を持つ4価の頂点についての研究[9][16] がこれまで多く行われている.しかし「平坦可折条件」の 研究の発展に比べると「剛体可折条件」については実際的

^{*}東京大学大学院工学系研究科修士課程

^{**}東京大学生産技術研究所 助教授

かつ一般的方法が確立されていない.以下では既往の研究 で見られた「平坦可折条件」の成果を使って,部分的に与 えられている折線情報から実際に平坦可折な山谷線を構 成する方法を提案する.ここでは折面化した際の折線情報 をできるだけ生かすという方針である.また「剛体折り」 については判定法を数値解析によるものと図式解法による ものを提案し,その有用性を数値解析結果から検証する.

3.1 平坦折り条件

以下では折線を平面に描かれたネットワーク情報の幾何 的操作として扱う.単頂点に集中する線分について平坦折 り条件とは以下のものを考慮する.

[i] 各折線間角度は 180 度以下

[ii] 頂点の1頂点から出る直線の本数は4本以上の偶数

[iii] 折線の成す一つ置き角の和は180度(川崎定理)

[iv] 山谷線の本数の差は2(前川定理)

 $[v]\theta_1 > \theta_2, \theta_2 < \theta_3$ の θ_2 両端の山谷は逆(隣接山谷条件) [iii][iv][v]は平坦可折条件として知られている諸性質で あり, [i][ii]は折線構成操作のため便宜上加えたものであ る. [v][iv][v]は線分の接続・座標情報のみ扱う問題であり, [ii][iii]は山谷情報を扱う問題である.従って与えられた折

線に対して平坦可折を目指して行われる調整操作は

判定 [i][ii] より「頂点・辺の追加・削除」

判定 [iii] より「節点座標移動」

判定 [iv] [v] より「山谷変更」

となる.[iii]より平坦可折な山谷は座標情報に依存して単 なる折線の接続情報からは決定できないことから,折線 ネットの決定 頂点座標調整 山谷調整といった順に操作 を行うものとする.接続情報を決定する「線分の追加・削 除」操作についてはどの節点からスタートしてもできるが (ただし結果は異なる),[iii]を考慮した「節点座標移動操 作」は効果的な順番を考慮する必要がある.ここに内部の 多角形の核を外側に向かって膨張するように操作を行う方 法を提案する.具体的に幾何グラフを扱うにあたって図1 に示すような頂点座標データと辺の情報を使用した.

図2:判定 [iii] をもとに行った座標調整

以上の流れに沿って可折面化する方法を適用した例を図2 に示す. **3.2 剛体折り条件**

図3:記号 $l_i(\theta_i, \rho_i)$

剛体折り判定について,平面につけられた各折線は微小な 二面角の変化が起こしうるか,という観点から,以下のよ うに定式化し,判定することができる.

半直線が集中する局所的な頂点を考える.半直線の折線 l_1, l_2, \dots, l_n のx軸からの平面角を $\theta_1, \theta_2, \dots, \theta_n$ とする. また l_1, l_2, \dots, l_n の2面角の補角をそれぞれ $\rho_1, \rho_2, \dots, \rho_n$ とする.z軸周りの回転,x軸周りの回転それぞれの操作 を表す行列をそれぞれ A_i, C_i とし, $\chi_i = A_i C_i A_i^{-1}$ とす ると,もし1枚の連続的な面が折られてつけられた折線な らば

$$\chi_1 \chi_2 \cdots \chi_n = I \tag{2}$$

が成り立つ.今剛体可折ならば平坦に開かれた状態から微 小変位 ($\Delta \rho$)を起こしうると考え, $\sin \Delta \rho_i = \epsilon_i, \epsilon_i \sin \theta_i$ を $\delta_i^s, \epsilon_i \cos \theta_i \epsilon \delta_i^c$ と表記することにすると,近似操作,高次 項省略の結果,左辺の表現行列は

のようになる.ここで (は山谷によって符号が異なる,微 小な二面角の変化に相当する値である.これが単位行列 I となることに注意し,行列の各成分に着目する.

まず, ϵ に関して 1 次のものしか含まない (1,3),(2,3) 成分に着目するとこれは

$$\boldsymbol{A}\boldsymbol{\epsilon_1} = \begin{bmatrix} \cos\theta_1 & \cos\theta_2 & \cdots & \cos\theta_n \\ \sin\theta_1 & \sin\theta_2 & \cdots & \sin\theta_n \end{bmatrix} \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix} = \boldsymbol{0}$$
(4)

となる.(1,2)(2,1) 成分に着目すると

$$\epsilon^T C \epsilon = 0 \tag{5}$$

Cマトリクスは

 $\begin{bmatrix} 0 & \cos\theta_1 \sin\theta_2 - \sin\theta_1 \cos\theta_2 & \cos\theta_1 \sin\theta_3 - \sin\theta_1 \cos\theta_3 & \cdots \\ 0 & \cos\theta_2 \sin\theta_3 - \sin\theta_2 \cos\theta_3 & \cdots \\ \vdots & \vdots & \vdots \\ sym & \vdots & \vdots \\ (6)$

または

ſ	$\stackrel{0}{-\cos\theta_2\sin\theta_1}$	$\cos \theta_1 \sin \theta_2 \\ 0$	$\begin{array}{c}\cos\theta_{1}\sin\theta_{3}\\\cos\theta_{2}\sin\theta_{3}\end{array}$	•••	$\cos \theta_1 \sin \theta_n \\ \cos \theta_2 \sin \theta_n$]
L	$-\cos \theta_n \sin \theta_1$	$-\cos \theta_n \sin \theta_2$	$-\cos \theta_n \sin \theta_3$		0	7

となる.式(4)(5)は式(2)の必要条件であるがこれらの幾何解釈は次の通りとなる.

式 (4) を $\sum \alpha_i = \sum \epsilon_i \lambda_i = 0$ とすると, 各 α_i は, 方向 λ_i , 大きさ ϵ_i を持ったベクトルと考えることができ, 実際の折れ面と対応させて考えると λ_i は平坦に開かれた状態での各折線方向, ϵ_i は二面角の補角の大きさに相当することに着目できる.式 (4)(5) が成り立つということは各 折線属性に合わせてベクトル表記された折線を結んだとき [1] 閉経路を描くことができ(式(4))

[2] 向き付けされた面積が0となる(式(5))

となることに相当する.

具体的な剛体可折性図式判定手順を図4を例に示す.

図4:剛体折り図式判定方法

まず谷折り線は外側のベクトル,山折り線は中心に向かう ベクトルとして山谷の折線属性にしたがい,方向を持たせ る((b)(e)(h)).次に,その方向ベクトルをl₁から順に 反時計回りに抜き出し,長さを調節しながら閉経路になる ようにする.ここでどうしても閉経路にならないもの(c) は剛体折り不可能.式(5)より閉経路になっても向き付け された面積が0にならないもの(i)も剛体折り不可能.閉 経路かつ向き付けされた面積が0となるものが剛体折り可 能と判定する.実際に(d)だけが剛体可折である.

複頂点の場合はまず各頂点で局所剛体可折かどうかをベ クトル図を描くことによって確認し,それぞれベクトル長 さの相互関係が無矛盾であれば剛体可折と判定できる.

3.3 数値解法

形式的折線図の座標データから与えられる*A*,*C*マトリ クスに対し,式(4)(5)を満たすモードの符号の存在判定を することにより,山谷の剛体可折性を判定することができ る.式(5)は非線形より Newton-Raphson 法に準じた繰 り返し計算により行う.まず*A*の一般逆行列*A*⁻を使って

$$\boldsymbol{\epsilon'} = [I - A^- A] \boldsymbol{\alpha} \tag{8}$$

と解の候補 ϵ' をたて (ここで α は各線分の折線属性にあわせ, ±1 で表されたものとする),

$$f(\epsilon') = \epsilon'^T C \epsilon' \tag{9}$$

3.4 数值解析結果

以上で定式化を行った剛体折り判定の数値解法の妥当性 を以下の例で検証した.

図5,6に示す4価と5価の単頂点,図7,8に示す2 頂点と4頂点の場合について,考えうる全ての山谷の組合 せから剛体可折なものを選び取ることができるかどうかを 検討した.

各図に示す l_i の山谷を ±1 で表し,その組合せを α ベ クトルとして入力し,繰り返し計算によって収束した ϵ の 符号のモードとの一致性より剛体可折判定を行う.

表1は図5に示す4価頂点のそれぞれ線の山谷属性(例 えば1を山折り-1を谷折りとする)に合わせて入力され た α と収束した ϵ の値である.表中の左の ×は実際の 剛体可折性を示し,それぞれに対し行った判定結果(入力 値と出力値の符号の一致性)とともに示した.式(6)をも とにした C_1 ,式(7)をもとにした C_2 の2種類のマトリク スを使用しそれぞれ収束結果を比較した.

また表2は5価頂点について C_1 マトリクスを使って行った解析で入力値 α と収束値 ϵ で符号が全て一致した山谷の組合せの収束値を選び出している.それぞれ収束値の負値に網掛けがされている.

表3は2頂点について全体マトリクスによる計算で入力 値と出力値の符号が一致した山谷の組合せのみをすべて あげた.表3の中で網掛けがされているのが各頂点 p_1, p_2 についても剛体可折と判定されたものである.

表4は図8の4頂点に対して判定を適用したものであ り,全体マトリクスも各頂点周りのマトリクスについても 剛体可折と判定された山谷のパターンを選び出している. 表4の下表は全体マトリクスで剛体可折とは判定されな かったが各頂点については剛体可折と判定されたパターン

 l_1

		実際の	【入力	Jα					C1 使用	出力ε				C2使用	出力ε	
パ	ターンNo.	可折性	1	12	13	14	判定	1	12	13	14	判定	11	12	13	14
	1	×	-1	-1	-1	-1	×	-0.007	-0.001	0.000	-0.019	\times	0.309	-0.749	-0.310	-0.749
	2	0	1	-1	-1	-1	0	0.500	-1.207	-0.500	-1.207	0	0.500	-1.207	-0.500	-1.207
	3	0	-1	1	-1	-1	\circ	-1.207	0.500	-1.207	-0.500	0	-1.207	0.500	-1.207	-0.500
	4	×	1	1	-1	-1	\times	-0.013	0.001	0.000	-0.031	\times	0.127	-0.310	-0.128	-0.311
	5	×	-1	-1	1	-1	\times	0.207	-0.500	-0.207	-0.500	\times	0.207	-0.500	-0.207	-0.500
	6	×	1	-1	1	-1	\times	0.019	0.000	0.001	-0.007	\times	0.311	-0.749	-0.310	-0.748
	7	×	-1	1	1	-1	\times	-0.031	0.000	0.001	0.013	\times	-0.130	0.310	0.129	0.309
	8	×	1	1	1	-1	\times	0.500	-0.207	0.500	0.207	\times	0.500	-0.208	0.500	0.207
	9	×	-1	-1	-1	1	\times	-0.500	0.207	-0.500	-0.207	\times	-0.500	0.208	-0.500	-0.207
	10	×	1	-1	-1	1	\times	0.031	0.000	-0.001	-0.013	\times	0.130	-0.310	-0.129	-0.309
	11	×	-1	1	-1	1	\times	-0.019	0.000	-0.001	0.007	\times	-0.311	0.749	0.310	0.748
	12	×	1	1	-1	1	\times	-0.207	0.500	0.207	0.500	\times	-0.207	0.500	0.207	0.500
	13	×	-1	-1	1	1	\times	0.013	-0.001	0.000	0.031	\times	-0.127	0.310	0.128	0.311
	14	0	1	-1	1	1	0	1.207	-0.500	1.207	0.500	0	1.207	-0.500	1.207	0.500
	15	0	-1	1	1	1	0	-0.500	1.207	0.500	1.207	0	-0.500	1.207	0.500	1.207
	16	×	1	1	1	1	\times	0.007	0.001	0.000	0.019	\times	-0.309	0.749	0.310	0.749

表1:図5の判定

図 6:5 価単頂点

14

 l_3

表 2	:	义	6	の判	定
-----	---	---	---	----	---

	C1 使用		出力を	
11	12	13	4	15
0.530	-1.132	-0.200	-0.284	-1.317
-0.199	-1.123	0.526	-1.307	-0.281
0.275	-1.099	0.275	-0.778	-0.777
-0.381	-0.279	-1.422	0.539	-0.934
0.279	-0.693	-0.849	0.307	-1.287
0.819	0.665	-0.266	1.238	-0.297
1.447	0.283	0.389	0.949	-0.548
-1.447	-0.283	-0.389	-0.949	0.548
-0.819	-0.665	0.266	-1.238	0.297
-0.279	0.693	0.849	-0.307	1.287
0.381	0.279	1.422	-0.539	0.934
-0.275	1.099	-0.275	0.778	0.777
0.199	1.123	-0.526	1.307	0.281
-0.530	1.132	0.200	0.284	1.317

表3:図7の判定 表4:図8の判定

			11	12	13	14	15	16	17	18	19	110	111	112
15	16	17	1	-1	-1	-1	-1	-1	-1	-1	-1	1	-1	-1
-1	-1	-1	-1	-1	-1	1	1	-1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	-1	-1	-1	1	1	1	-1	1	-1	-1
-1	1	-1	1	-1	-1	-1	-1	-1	-1	-1	1	-1	1	-1
-1	1	-1	-1	-1	-1	1	1	-1	-1	-1	1	-1	1	-1
-1	1	-1	-1	-1	-1	1	1	1	1	1	1	-1	1	-1
-1	1	-1	1	1	1	-1	-1	-1	-1	-1	-1	1	-1	1
-1	1	-1	1	1	1	-1	-1	1	1	1	-1	1	-1	1
1	1	-1	-1	1	1	1	1	1	1	1	-1	1	-1	1
-1	-1	-	-1	1	1	1	1	-1	-1	-1	1	-1	1	1
-1	-1	1	1	1	1	-1	-1	1	1	1	1	-1	1	1
1	-1	1	-1	1	1	1	1	1	1	1	1	-1	1	1
1	-1	1												
1	-1	1	11	12	13	14	15	16	17	18	19	110	111	112
1	-1	1	1	1	1	-1	-1	-1	-1	-1	1	-1	1	1
1	-1	1	1	-1	-1	-1	-1	1	1	1	1	-1	1	-1
1	-1	1	-1	-1	-1	1	1	1	1	1	-1	1	-1	-1
1		1	-1	1	1	1	1	1	-1	-1	-1	1	-1	1

であり,また平坦可折なパターンでもある.

まず表1からは C_1, C_2 どちらのマトリクスを使用した 場合においても正しい剛体可折判定を行い,判定の正しく 行われた場合に ϵ は C_1, C_2 ほぼ同じ値に収束している.た だし入力値として剛体可折でない組み合わせのものを入 力した場合には収束値の挙動に違いが見られ, C_1 では ϵ_i が0となるものが現れる場合が多いのに対し, C2では剛 体可折な山谷モードに収束する.また収束値は,平坦可折 な4価単頂点の向かい合う折線での二面角間に成立する 関係 $\|l_1\| = \|l_3\|, \|l_2\| = \|l_4\|$ が成立していることにも着 目できる.表2に示すような5価頂点の場合は4価頂点の ように二面角関係は一意に定まらず, $C_1 \ge C_2 \ge$ で収束値 も異なる値となった.しかし符号に着目した場合,どちら も正しい剛体折り判定を行っていた.表に示す剛体可折と いう判定が得られた山谷モードは実際にも剛体可折となっ ている.表3に示す2頂点の場合,全体マトリクスを使用 した判定のみでは各頂点周りでは剛体可折でない山谷モー ドを選び出してしまうことが分かる.表4の上表の判定結 果は直感的には全てのモードを尽くしていないような印象 を与えるが,表下のような山谷モードは実際折ってみると

面の曲げ変形が生じることを確認することができ,仮定に 反するモードであることが分かる.

4 畳み込み解析

折面の畳込み解析にあたって,折面をトラス要素でモデ ル化し,半谷・川口ら [18][19] によって提案された一般逆 行列を使用した部材不伸長畳込み経路解析を行った.増分 変位として重ねあわされる不伸長変位モードの各係数は, ポテンシャルエネルギーの最大勾配を得るものを採用し, また増分変位は線形項までを考慮したものとし,

$$\boldsymbol{\epsilon} = \boldsymbol{B}\boldsymbol{u} \tag{10}$$

$$\boldsymbol{H} = [\boldsymbol{I} - \boldsymbol{B}^{-}\boldsymbol{B}] \tag{11}$$

$$\Delta \boldsymbol{x} = \boldsymbol{H} \boldsymbol{H}^T \boldsymbol{f}(\Delta t) \tag{12}$$

によって各ステップの Δx を得るものとする.折線はトラ ス部材で表現するが,その山谷属性を各頂点 z 座標の初期 変位として表現した.その z 成分は,内部点は集中する山 谷線の差によって初期面外変位方向成分を決定し,周縁部 は折面の周縁部の折線情報と一致するようにと決定した. この方法により折線情報の与えられた平面の畳込み経路が 解析しうることを例として図9に示す.(a)(b)は面内荷重 をかけたもの,(c)は図のようなねじり荷重をかけたもの である.

5 一連の流れ

図 10:固有曲げモード

図 11:折面化されたモード

表5:	解析諸元
寸法	$160.0 \times 160.0 \times 1.0[mm]$
Young's Modulus (E)	$200000[N/mm^2]$
Poisson Ratio (ν)	0.3

表6:8×8板の固有値

モード	固有値	モード	固有値
1	-0.48	13	0.23
2	-0.34	14	0.76
3	-0.32	15	1.23
4	-0.19	16	2.05
5	-0.12	17	2.39
6	-0.09	18	7.06
7	-0.06	19	7.49
8	-0.03	20	7.63
9	0.03	21	7.95
10	0.08	22	8.71
11	0.14	23	11.10
12	016	24	20.42

以下で平板の固有モード解析から折面化,条件を満 たす折線の構成,畳込み解析という一連の流れを示す. 図 10,11 は2.で提案した方法によって得た固有曲げモー ドと折面モードである.要素は有限要素法による9節点 degenerated-shell要素を使用し,負又は0近傍の固有値の ものを除いて小さな固有値に対応する順に並べた.なおz 軸方向変位は拡大して表示している.

mod18,20,22 を除くと折線が想起しやすい変形となって いることが分かる.ここで mod18,22 は比較的折線が想起 しにくいのでこれらを選び,可折条件を満たすような折線 への変換を行う.

mod22の折面から判断できる山谷線は図 12(a) に示す 部分である.内部は山谷が判別できない.ここに平坦可折 面化操作を行うと(b)のような谷線が決定される.これは 平坦折可能な折線であるが,剛体可折ではないため図右の ような補助的な折線を入れる.図11のmod18の山谷は 平坦可折条件もやはり剛体可折条件も満たしていないため 剛体折りを満たすような斜折線を挿入する.以上のように mod18,22 はともに剛体可折ではないが,ここでは例題と して折線を追加して可折面化を行っている.以上のような 可折面化によって決定された山谷をもとにトラスモデルの 畳込み解析を行った.

表7:解析諸元

図 13 より,最終的な畳込み形状にあって折面化した周縁 部での山谷情報は保存されていると分かる.しかしmod18 では畳込み進行中に明らかに面の交差が見られる. なお mod22 を図 11 の折面化されたときの周縁部のみ の情報から対称的な初期変位を作成し畳込み解析を試み たとき,可折面でないため解析プロセスが停止してしまっ たが,可折面化操作によって面の内部の谷線を考慮した初 期変位としたときに図のように解析が進行した,という点 で可折性条件を考慮することの必要性がわかる.

step 400

初期変位

step 700

図 13:mod18,22 の畳み込み経路

6 まとめと課題

膜構造の折線構造に対する折紙的なアプローチによる 解析法を提案した.以下にそれぞれ提案した手法の妥当性 について得られた知見をまとめる.

1.弾性マトリクスを用いた曲げモードに基づく折線パ

ターンの抽出法を提案した.

- 2. 平坦可折条件を整理した.
- 3. 剛体可折判定法を提案した.

4.提案した平坦可折条件を満たす折線の構成法は幾つかの折りパターン例を可折面化するものの,まだ適用範囲が限定される.

5.提案した剛体可折判定法は,導出では必要条件にすぎ なかったが,多くの解析例から正しく剛体可折性が判定で きることが分かった.

今後の課題として

1.固有値が畳込み特性に持つ意味を明確化すること

2. 剛体可折判定法は完全な剛面を想定しているため実際の膜材より硬いという点の緩和

3.面の接触を考慮に入れた畳込み経路解析モデルの確立 すること

などが挙げられる.

参考文献

[1] F.Otto, "IL 5 Wandelbare Dacher (Convertible Roofs),"Wittenborn and Company,1972

- [2] Osamu Mori, Yuichi Tsuda, Maki Shida, Jun'ichiro Kawaguchi, "Dynamic and Static Deployment Motions of Spin Type Solar Sail," 18th International Symposium on Space Flight Dynamics, 2004
- [3] 野島 "折紙・針金構造,"矢川編,構造工学ハンドブック,丸善,pp.819-822,948-958,2004
- [4] 渡辺, 名取, "大型太陽電池セルの折り畳みと展開,"第48回宇宙科学 技術連合講演会, pp.796-800,2004
- [5] 升岡,古谷 "スピン展開ソーラーセイル膜面のための回転二重波折り パターンの提案とその展開実験,"第46回構造強度に関する講演会, 日本航空宇宙学会,2004
- [6] 三浦、山本、田畑、谷沢、"テンショントラスアンテナの鏡面構成と機械 特性、"第31回構造強度に関する講演会講演集、日本航空宇宙学会・ 日本機械学会、1989
- [7] Miura, "Proposition of Pseudo-Cylindrical Concave Polyhedral Shells,"Proceedings of the IASS Symposium on Folded Plates and Prismatic Structure, 1970
- [8] K.Tanizawa,K.Miura, "Large Displacement Configurations of Bi-Axially Compressed Infinite Plate," Transactions of the Japan Society for Aironautical Sciences, Vol.20, No.50, pp. 177-187, 1978
- [9] Miura, "A Note on Intrinsic Geometry of Origami" Proceedings of the First International Meeting of Origami Science and Technology, Ferrara, Italy, pp. 239-249, 1989
- [10] Miura, "Fold-Its Physical and Mathematical Principle" Proceedings of the Second International Meeting of Origami Science and Scientific Origami, Otsu, Japan, pp. 41-50, 1994
- [11] S.D.Guest, S.Pellegrino, "The folding of triangulated cylinders, Part I,II: ," ASME Journal of Applied Mechanics, 61, pp.773-783,1994
- [12] Kawsasaki, "On High Dimentional Flat Origamis," Proceedings of the First International Meeting of Origami Science and Technology, Ferrara, Italy, pp.131-141, 1989
- [13] Kawasaki, "R(γ)=I,"Proceedings of the Second International Meeting of Origami Science and Scientific Origami,Otsu,Japan,pp.31-40,1994
- [14] T.C.Hull, "The Combinatorics of Flat Folds:A Survey,"Proceedings of 3rd International Meeting of Origami Science,Mathematics,and Education (T.Hull(ed), "Origami3",AKPeters,2002)
- [15] S-M.Belcastro.T.C.Hull:A Mathematical Model for Non-Flat Origami,Proceedings of the 3rd International Meeting of Origami Science,Mathematics and Education (T.Hull(Ed), "Origami3",AKPeters,2002)
- [16] D.Huffman, "Curvature and crease:a primer on paper," IEEE Transactions on Computers, vol.C-25, No.10, pp.1010-1019, 1976
- [17] 島貫, 加藤, 渡辺, "展開図を用いた折り紙操作過程における手順毎 の折り方構成,"電子情報通信学会研究報告 [パターン認識・メディア 理解], PRMU2002-19, p.71-78,2002
- [18] 半谷裕彦,川口健一:形態解析 一般逆行列とその応用,培風館,1991.
- [19] 川口, 那花, 半谷, "骨組み構造の畳み込み解析,"日本建築学会構造系 論文集, No.498, pp.99-104, 1997
- [20] 宮崎,川口,半谷,"矩形板要素による膜構造の安定化移行解析,"膜構 造研究論文集'95,日本膜構造協会,pp.13-17,1992

Naohiko Watanabe^{*1} Ken'ichi Kawaguchi^{*2}

SYNOPSIS

The "Origamic" approach gives us useful information and suggestion in the design of folding pattern of membrane, which can be applied to retractable membrane roof or foldable membrane structures. In the Origamic approach, membrane is assumed that it has perfect shear rigidity and its flexural deformation occurs only along the crease line. In the paper extraction of basic folding pattern from eigen modes of bending deformation is firstly proposed. Then the condition of foldability and its applications to the generation of foldable pattern in the finite displacement range are also proposed. Finally the patterns and conditions are examined by folding analysis.

*1 Graduate Student, Department of Engineering, University of Tokyo

*2 Associate Professor,Institute of Industrial Science,University of Tokyo