膜構造屋根散水システムの熱的効果に関する研究

梗

広島県に建つ膜構造体育館(広島学院ザビエル体育館)は、自然環境との共生を重視する学校 の教育方針を具現化するため、当施設の温熱環境調節には、機械力に基づくアクティブクーリン グを行わず、自然エネルギーを利用したパッシブクーリングの手法として膜屋根散水による蒸発 冷却システムを計画し、実施した。その原理は、膜屋根面に散水を行い、水分の大気中への蒸発 に伴う冷却効果により膜表面温度を下げ、これにより体育館内部の自然冷房を行うものである。 本研究では、当体育館における屋根散水システムの概要とその熱的効果に関する実測結果を示し、 膜屋根散水による蒸発冷却効果によって体育館内部の温熱環境が向上し、その自然冷房効果が顕 著であること、更に、一重膜屋根の採光・日射透過特性に関する実測結果を報告する。

1. まえがき

広島学院ザビエル体育館は、自然との共生を重視す る学校の教育方針を具現化するため、緑に囲まれたキ ャンパスと一体化した、明るく柔らかい空間の創造を 目指し、膜材と集成材を組み合わせたテンション膜構 造屋根(グラスファイバー基布にテフロンコーティン グ、厚 0.8mm、一重膜)を採用している。膜構造屋根 は、透光性のあることが大きな利点であるが、透過日 射もあるため、特に、夏季の内部温熱環境には、十分 な検討が必要とされる。当施設は、中学・高校生用の 体育館であるため、機械力に基づくアクティブクーリ ングを行わず、自然エネルギーを利用したパッシブク ーリングの手法として、膜屋根散水システムを計画・ 実施した。その原理は、膜屋根面に散水を行い、水分 の大気中への蒸発に伴う冷却効果により膜表面温度を 下げ、これにより体育館内部の自然冷房を行うもので ある。本研究では、当膜構造体育館における屋根散水 による蒸発冷却システムの概要とその熱的効果の実測 結果並びに一重膜屋根の採光・日射透過特性に関する 実測結果について報告する。

石 川 幸 雄 *1

概念をかけたいとしたなくも大い地の仏がので加え

写真1. 広島学院膜構造体育館(屋根散水時)

2. 建物及び設備の概要

広島市(34²2^NN、132²26^E)に建設さ れた当体育館は、RC造、2階建、延床面積2382.6 m²の建物で、そのうち2階のアリーナ部分が膜構造屋 根となっており、膜面積は988.6m²である。当体 育館のアリーナ平面図、屋根平面図、断面図を図1、 図2、図3に、屋根散水時の建物外観を写真1に示す。 なお、当体育館の自然冷房の手法としては、屋根散水 の他に自然換気(窓開口及びベンチレータ)を採用し ている。散水系統を図4に示すが、散水は主として、 当体育館の裏山からの豊富な湧水を貯水槽に貯めて利 用している。膜屋根面への散水は、ポンプ(E社製: 32FQD61.5、1.5kW)を介して、屋根面を均 ーに濡らすために屋根集成材アーチの交点部分に設置 した5個のスプリンクラーにより行っており、散水後 は雨水系統で排水している。スプリンクラーは、風の 影響を余り受けず、又、空気中での蒸発が少なく、膜 表面での冷却効果が大きくなるように雨粒状のポップ アップスプレー(B社製:モデル415C(20A)、 吐出水圧1.8kg/cm²、散水量17L/min、散水範囲 直径13.8m)を使用している。

なお、散水量は、実測結果から屋根単位面積当り 4.1 kg/h、散水温度は実測期間中約20℃であった。

3. 実測計画及び実測結果

3.1 実測方法

膜屋根面に散水した場合と非散水の場合のアリーナ 内部温熱環境(温湿度、風速、 PMVなど)を実測し、 膜屋根散水の熱的効果を調べる。

屋根の半分を散水、他の半分を非散水とする同時測 定が望ましいが、同一連続空間であり、又、システム 的に系統別散水を行わないため、散水状態の実測日と 非散水状態の実測日を分けて行うことを考慮したが、 天気の持続性と実測可能日の限定等から、同実測日に おいて途中(日中)で膜屋根散水を行い、非散水時と 散水時の内部温熱環境を比較することとした。なお、 本実測では、屋根散水の熱的効果の実測を主眼とし、 自然換気による室内温度への影響を除くため、アリー ナ窓、開口部は実測期間中全閉とした。又、本実測で は、併せて、当膜構造体育館における採光特性及び日 射透過特性を調べた。

30 400 пп 005 36. 用英 百百 0 0

図2. 膜屋根平面図

3.2 測定項目及び測定点位置

測定項目を表1に、測定点位置を図1、図3に示す。 (測定点合計-38点、データロガー計測インターバ ル-1分、A/D変換、パーソナルコンピュータデー タファイル出力インターバル-10分)

3.3 実測日

1	98	8 年	8	月	3	0	日	(火)	1	0 :	0	0 ~	- 1	8	: 0	0
								(快時	青)							
			8	月	3	1	日	(水)		9:	0	0 ~	- 1	8	: 0	0
								(午前	前中	, う	す	晴、	午	後:	から	- 曇)
(屋	根散	水民	5間	:	8	月	3	0日	1 :	2:4	4	7~	1	5	: 0	0、

8月31日 12:30~14:30)

4. 実測結果及び考察

4.1 実測結果

外乱(外気温湿度・日射量・大気ふく射量・散水温 度)及び膜表面温度、アリーナ内部温湿度・グローブ 温度・床表面温度、更にアリーナ内部のPMVの実測 結果及びPPD・SET*の計算結果の一例を図5及 び図6に示す。但し、PMV及びSET*の検討では、 アリーナの使用用途は、夏季軽装での集会時(Standing at ease)を想定し、C1o=0.4(0.062m²K/W)、 Met=1.2(70 W/m^2)を設定した。更に、アリーナ 内部の非散水時及び散水時の垂直温度分布の一例を図 7に示す。表2には、照度測定結果と昼光照度率^{5,1}(屋外水平面昼光照度に対するアリーナ内部昼光照度の 比)、又、表3には、日射量測定結果と外部全日射量 に対するアリーナ内部日射量の比を示す。

4.2 考察

4.2.1 散水による熱的効果

非散水時と散水時の外乱(特に日射量など)がほぼ同 条件のところでの内部環境の比較結果として、以下の (1)~(5)では、8/30を例にとり、日射量がほぼ 同程度(約600kcal/m²h)の12:30と14:50における各値 を比較し、熱的効果を検討する。

(1) 非散水時と散水時のアリーナ内部温度

アリーナ内部空気温度は、屋根散水によって、各点と も約2~3℃程度低下している。

(2)非散水時と散水時の膜外表面温度、アリーナ床 表面温度、アリーナ内部グローブ温度(C点) 膜外表面温度は屋根散水によって、南東面で約12

惠1 测定值日

	42.1.1	MINE.	яц					
測定 項目	婴 素	点数	測定 ポイント	测定器	データロガー			
温度	 ・ 膜屋根外表面 (3 ケ所) ・ アリーナ内部空気(平面5 5 所× 垂直3点(上部,中央部、下部)) ・ グローブ温度 ・ 散水温度 ・ 床表面温度 	3 1 5 1 1 1	F.G.H A.B.C D.E C(中央) 貯水槽内 C	CC熟電対	n de cal Antiere Antiere au			
	・外気温度	1	1 (渡り總 下付近)	0.75段	+			
	 有効放射計表面温度 	C(l未)、 校舎屋上	d ours	9.77 E				
17.61	・アリーナ内部	1	C (床)	Margare 14				
相対 湿度	皮 化 ・ 皮 化 ・ 皮 化 ・ 皮 化 ・	1	1 (渡り廊 下付近)	デジタル 温湿度計	ieną:			
	・アリーナ内部(水平面)	1	C (床)	17 04 14	202			
口外耳肌	 外部水平面全天 	1	校舍屋上	13 M3 A1	1.1			
121.14	・グローブ球付近	1	C (中央)	カノマックス	目視			
AN US	・外部	1	校會屋上	風速計				
有効	・アリーナ内部(水平面)	1	C (床)					
放射量	·外部水平面	1	校舎屋上	1 1月 20 62 413 81	1.11			
PMV	・アリーナ内部	1	C (中央)	コンフォト メーター	# −€			
照度	・アリーナ内部 (3ヶ所)	3	A,C,E (床)	照度計	999E			
	· 外部水平面	·外部水平面 1 校舍屋上						
散水量	 ·	1	ポンプ吐	超音波	日祝			

℃、北西面で約9℃、北東面で約7.5℃低下している。 又、床表面温度は、散水によって、約3.6℃低下している。この結果、グローブ温度(C点)は、約4℃(34.9→30.8℃)低下している。

(3)非散水時と散水時のアリーナ内部のPMV、PPD

PMVは屋根散水をすることによって、1.20(

1.89→0.69)低下し、この結果、PPDは59%(71 →12%)低下している。

(4) 非散水時と散水時のアリーナ内部のSET*

SET*は屋根散水をすることによって、2℃(31.9 →29.9℃)低下している。

(5) 非散水時と散水時のアリーナ内部空気の垂直温 度分布

図7から一部例外はみられるものの、全般的にみて 概ね、非散水時は垂直温度分布(上部>中部>下部) は顕著であるが、散水時は垂直温度分布ははっきりみ られず、C点などは上部の温度が一番低くなっており、 非散水時とは逆転(上部<中部<下部)している傾向も みられる。各点での、床上0.5mの点と5mの点での 垂直温度差は、非散水時の最大で約1℃弱程度、上部 >下部となっているが、散水時ではC点で最大約0.8 ℃程度、上部<下部となっている。

(6) 非散水時と散水時のアリーナ内部風速

風速測定結果(C点、FL+1,000)から、非散水時 間帯と散水時間帯の平均風速をみると、8/30の非散水 時間帯で0.15m/s、散水時間帯で0.22m/s、8/31 の非散水時間帯で0.06m/s、散水時間帯で0.18 m/sとなり、いずれも散水時間帯>非散水時間帯となっ ている。これを8/30についてみると、散水開始前の平 均風速は0.09m/sであったのが、散水中は0.22 m/sとなり、散水終了後は0.20m/sとなっている。散 水によって、アリーナ上部の空気温度が下り、ダウン ドラフトが生じ、この結果、散水中は内部気流速が増 加し、散水終了後は再びアリーナ上部の空気温度が高 くなり、これに伴い対流により上昇気流が生じ、散水 終了後も内部気流速が比較的大きくなっているものと 考えられる。

(7)非散水時と散水時のPMV、SET*の分布 本実測時におけるPMVは、非散水時で-1.7~+
1.9の範囲に分布し、散水時で-0.5~+1.9の範 囲に分布している。又、SET*は、非散水時で23.4 ~32.8℃であるのに対し、散水時で26.0~32.4 ℃の範囲に分布している。ここで、PMV値として、 ±1.0を基準にとると、この範囲には、散水時で約 78%、非散水時で約76%が入っており、これによ り、日中の散水時でのPMVは、散水を行わない場合 に比べてかなり良好な値になっている事がわかる。一 方、SET*は、25℃をいずれも上廻っているが、 "やや暖かい"と知覚される30℃までには、散水時

-44-

で約63%、非散水時で約69%が入っている。日中の散水時でのSET*の値自体も、散水を行わない場合に比べて、全般的にかなり低い値になっていると考えられる。

4.2.2 膜材の熱・光特性

(1)実測期間中での昼光照度率は中央C点で7~11
%、A点で6~9%、E点で5~10%であり、中央 C点でやや大きくなっている。A点、C点、E点の平 均値は、各々、7.4、9.4、7.4%(全平均値8.1%)である。なお、昼光照度率は、散水時間帯、非散 水時間帯共に、各々の全平均値で8.1%と、同値であった。

(2)屋外水平面全日射量に対するアリーナ内部C点の日射量の比は、9.4~16.2%(全平均値14.1%)となっている。又、この値は、散水時間帯での平均値で14.3%、同非散水時間帯で14.0%であった。((1)、(2)の検討は、8/3010:00~16:00、8/319:00~16:00における30分間隔の実測値を用いて行ったものである。)

5. 昼光照度の実測値より膜材の光透過率の推定

5.1 計算理論

内部の点 p における昼光照度 E p を膜による成分と窓 による成分とに分けて扱い、(1)式で表す。なお、 屋外水平面昼光照度 E r は(2)式で表される。

 $E_{P} = E_{dM} + E_{rM} + E_{dW} + E_{rW} \cdots \cdots \cdots (1)$ $E_{T} = E_{d} + E_{r} \cdots (2)$

まわりの三方が山に囲まれていることを考慮し、窓 には、直射光が入射せず天空光のみ入射すると仮定す ると、窓による点pの直接昼光率Ddwは(3)式で表 せ、又、間接昼光率Drwは作業面切断の公式を用いる と(4)式で表せる。

Ddw	-	E dw / E r × 1 0 0
	=	$\tau w \cdot M \cdot R \cdot U w \qquad \cdots \cdots \cdots \cdots \cdots (3)$
Drw	=	E rw/Er×100
	1.51	$(F_1 \cdot \rho_1 + F_2) \cdot \rho_2 \qquad (1)$
	Ē	$\frac{1}{A_{F} \cdot (1 - \rho_{1} \cdot \rho_{2}) \cdot E_{r}} \times 100 \cdots (4)$

(4) 式において、透明窓に対しては、

図7. 非散水時と散水時のアリーナ内部の垂直温度分布

表2. 照度測定結果と昼光照度率

位置		外部	74	ーナ内部	(1x)	8	昼光照度率 (%)				
日何	日芬 贲川	(权曾歷上) (1x)	A点	C 点	EA	A点	C点	E点	平均值		
8/30	10:00	83840	120	7700	6957	102/	9.2	8.3	14		
	10:30	89630	-	8104	7355		9.0	8.2	-		
	11:00	94370	6395	8809	7383	6.8	9.3	7.8	8.0		
	11:30	102080	7049	9366	7613	6.9	9.2	7.5	7.8		
	12:00	95970	6950	8957	7050	7.2	9.3	7.3	8.0		
	12:30	94960	7103	8884	6785	7.5	9.4	7.1	8.0		
	13:00	91070	7005	8499	6303	7.7	9.3	6.9	8.0		
	13:30	90600	7021	8257	5942	7.7	9.1	6.6	7.8		
	14:00	68130	5244	6135	4431	7.7	9.0	6.5	7.7		
	14:30	49570	3750	4537	3409	7.6	9.2	6.9	7.9		
	15:00	71480	5694	6320	4365	8.0	8.8	6.1	7.6		
	15:30	58690	4751	5294	3644	8.1	9.0	6.2	7.8		
	16:00	28910	2123	2678	1908	7.3	9.3	6.6	7.7		
	/16:30	35300	979	1286	968	2.8	3.6	2.7	3.11		
	17:00	10980	763	1018	747	6.9	9.3	6.8	7.7		
	17:30	5770	483	703	519	8.4	12.2	9.0	9.8		
	\18:00	2480	288	442	326	11.6	17.8	13.1	14.2/		
8/31	9:00	64740	4167	6518	6270	6.4	10.1	9.7	8.7		
	9:30	36620	2626	3706	3276	7.2	10.1	8.9	8.7		
	10:00	42270	3064	4138	3489	7.2	9.8	8.3	8.4		
	10:30	40460	2909	3893	3252	7.2	9.6	8.0	8.3		
	11:00	32470	2352	3200	2722	7.2	9.9	8.4	8.5		
	11:30	25090	1831	2504	2100	7.3	10.0	8.4	8.5		
	12:00	32620	2388	3167	2627	7.3	9.7	8.1	8.4		
	12:30	98780	7778	10112	7953	7.9	10.2	8.1	8.7		
	13:00	106550	7902	9731	7471	7.4	9.1	7.0	7.9		
	13:30	48660	3538	4545	3634	7.3	9.3	7.5	8.0		
	14:00	31640	2346	3046	2408	7.4	9.6	7.6	8.2		
	14:30	45660	4026	4879	3644	8.8	10.7	8.0	9.2		
	15:00	61350	3779	4464	3162	6.2	7.3	5.2	5.2		
	15:30	50980	4224	4654	3152	8.3	9.1	6.2	7.9		
	16:00	32650	2479	3096	2118	7.6	9,5	6.5	7.9		
	/16:30	11590	9185	1230	931	79.2	10.6	8.0	32.6		
	17:00	3050	3442	555	414	-	18.2	13.6	43.9		
	17:30	4910	4661	703	526	94.9	14.3	10.7	40.0		
	\18:00	1620	2533	453	297	- 75	26.7	18.3	48.3/		
	at 11-		1	全 (1)		7.4	9.4	7.4	8.1		
	4- 12]	10		107K1時		1.8	9.4	1.1	8.1		
		and the second		3L HY 7K 85	Design of the second	1 1 2	1 9 4	1 7 8			

(膜材:FGT-800、厚 0.8mm(C社))

F 1 =	Er•	D ₩1 •	a / 0.	5 ·	Αw	• τ w •	Μ·R
							(5)
F 2=	Er•	{ D w;	2 + D W1	• (1	- a	/ 0.5	j)}
	• A	w. т.w	• M • R				

とし、ここで、 a = 0.32、 D w₁ = 0.25、 D w₂ = 0.05、 t w = 0.9、 M = 0.9、 R = 0.85を用いる。又、

$$\rho_{1} = \frac{\sum_{i}^{i} A_{i} \cdot \rho_{i}}{\sum_{i}^{i} A_{i}} = 0.4$$

$$\rho_{2} = \frac{\sum_{i}^{i} A_{i} \cdot \rho_{i}}{\sum_{i}^{i} A_{i}} = 0.492$$

である。従って、(1)式の右辺の3項、4項については(7)式が得られる。

 $E dw + E rw = (D dw + D rw) \times E r / 1 0 0 \cdots (7)$

次に、膜面透過光による内部の昼光照度は(8)式 で表される。

 $E dM + E rM = E_P - (E dW + E rW)$ (8)

膜面には全昼光が入射するので、点pにおいて(9) 式が得られ、これは全昼光に基づく膜による直接昼光 率Ddn成分と間接昼光率Drn成分とが考えられる。

$$\frac{E_{P} - (E dW + E_{TW})}{E_{T}} \times 1 \ 0 \ 0$$

$$= D d_{M} + D_{TM} \cdots \cdots \cdots \cdots \cdots (9)$$

膜面の光透過率をτ mで表すと、Ddmは(10)式で表さ れ、Drmは作業面切断の公式から(11)式で表される。

$$Dd_{M} = Ed_{M} / E_{T} \times 100 = \tau_{N} \cdot U_{N} \cdots \cdots (10)$$

$$Dr_{M} = Er_{M} / E_{T} \times 100$$

$$= \frac{(F_{1} \cdot \rho_{1} + F_{2}) \cdot \rho_{2}}{A_{F} \cdot (1 - \rho_{1} \cdot \rho_{2}) \cdot E_{T}} \times 100 \cdots (11)$$

$$(11) 式において拡散面 (膜面) に対しては、$$

表3. 日射量測定結果と外部全日射量に 対するアリーナ内部日射量の比

0/20	時刻	外 部 (校舎屋上) (kcal/m ² h)	アリーナ内部 C点 (kcal/m ² h)	内部(C点)の日射 /外部全日射 (%)
0/ 30	10:00	630.1	86.9	13.8
100000	10:30	654.9	89.2	13.6
	11:00	677.3	95.0	14.0
	11:30	697.3	104.2	14.9
	12:00	621.9	97.3	15.6
	12:30	599.5	96.1	16.0
	13:00	606.6	93.8	15.5
	13:30	610.1	90.4	14.8
	14:00	504.0	67.4	13.4
	14:30	375.5	50.1	13.4
	15:00	575.9	72.0	12.5
	15:30	486.3	61.6	12.7
	15:00	235.2	30.6	13.0
	/16:30	304.7	11.0	3.6
	17:00	67.7	8.7	12.9
	17:30	37.1	6.4	17.3
25.0	\18:00	22.9	5.3	22.9/
8/31	9:00	476.9	72.0	15.1
	9:30	264.6	38.6	14.6
	10:00	304.7	44.4	14.6
	10:30	294.1	42.1	14.3
	11:00	235.2	34.0	14.5
	11:30	184.5	27.1	14.7
	12:00	239.9	34.0	14.2
	12:30	143.3	115.7	10.0
	13:00	814.1	112.3	13.8
	13:30	349.0	91.0	13.7
	14:00	223.3	51.1	15.0
	14.00	507 5	17.9	10.2
	15.00	492.2	41.0	12.6
	15.00	959.7	95.9	12.0
	/16.00	238.7	12.2	14.8
	17.00	30.1	13.3 6.4	19.8
	17.30	47.7	8.7	18.3
	18:00	26.5	6.4	24.2/
				14.1
平	均值	Ř	女水時	14.3
outes.		非	散水時	14.0

5. 2 推定結果

膜の光透過率の推定結果を表4に示す。

8月30日、8月31日とも16:30以後のデータを除 いて分析すると、膜の光透過率は、全時刻の平均値で 6.3%となり、同膜材の試験データ(膜工事後3.5ヶ 月経時点での6.5%¹⁾)にほぼ一致している。なお、 この値は膜散水時間帯と非散水時間帯では、その平均値 は同値となり、散水による光透過率の低下は見られな かった。又、散水により膜外表面が洗浄されるため、

*1)(財)日本ウェザリングセンターにおける自然暴露試験結果を内挿補間した値。

経時的にみて、通常の散水のない状態に比べて、膜面 汚れによる光透過率の低下は小さいものと考えられる。

6. まとめ

本研究では、膜屋根構造を持つ体育館における屋根 散水システムによる蒸発冷却効果を実測により検討し た。その結果、屋根散水を行うことにより、内部の PMVが低下し、その結果PPDも低下する。又、 SET*も低下しており、屋根散水により内部の温熱 環境が向上し、その自然冷房効果が顕著であることを 示した。又、屋根散水により、内部の垂直温度の均一 化と内部風速の増加の傾向が見られることを示した。 本研究では、更に、当腹構造体育館(一重膜)の採光 特性として、昼光照度率、膜光透過率及び、日射透過 特性に関する実測結果を示した。

[謝辞]

本研究に当り、竹中工務店広島支店設計部西胤暢夫 氏、坂本和彦氏、同技術研究所石黒武氏、福永知彦氏 の協力を得た。記して謝意を表す。

[記 号]

Ai: アリーナ内部構成第 i 部材の面積 (m²) A_F: アリーナ床面積 (m²) An:膜面積 (m²) Aw:窓面積 (m²) Ddn: 膜による点 pの直接昼光率 (%) Ddw:窓による点pの直接昼光率 (%) Drm:膜による点pの間接昼光率 (%) Drw:窓による点pの間接昼光率 (%) Ed: 屋外水平面直射光照度 (1 x) Edm: 膜による点pの直接照度 (1x) Edw: 窓による点pの直接照度 (1x) Ep: 点pの昼光照度 (1x) Er: 屋外水平面天空光照度 (1 x) Erm: 膜による点pの間接照度 (1x) Erw: 窓による点pの間接照度 (1x) E_T: 屋外水平面昼光照度 (1 x) M:窓の維持率 PMV:予測平均温冷感申告 PPD:予測不快者率 (%) R:窓面積有効率 SET*:新標準有効温度 (℃)

表4. 膜の光透過率

	位置	8	員光透道	日本 (96)
819	時刻	点 A	C点	E点	平均值
8/30	10:00	-	7.2	6.9	-
	10:30	-	7.0	6.8	-
	11:00	5.1	7.3	6.3	6.3
	11:30	5.3	7.2	6.0	6.1
	12:00	5.6	1.3	5.7	6. Z
	12:30	6.0	1.4	5.5	6.3
	13:00	0.2	1.3	5.3	0.3
	14.00	6.2	7.0	4.2	6.1
	14.30	5 1	7.2	5 9	6.0
	15:00	6.5	5.8	4.3	5.9
	15:30	6.7	7.0	4.4	6.0
	15:00	5.7	7.3	4.9	6.0
	/16:30	0.5	1.8	0.3	0.91
	17:00	5.3	7.3	5.1	5.9
	17:30	7.0	10.1	7.7	8.3
	18:00	10.8	15.6	12.5	12.9/
8/31	9:00	4.7	8.1	8.5	7.1
	9:30	5.6	8.1	7.6	7.1
	10:00	5.6	7.8	6.9	6.8
	10:30	5.6	7.6	6.5	6.6
	11:00	5.6	7.9	7.0	6.8
	11:30	5.7	8.0	7.0	6.9
	12:00	5.7	7.7	6.7	6.7
	12:30	6.4	8.2	6.7	7.1
	13:00	5.8	7.1	5.4	6.1
	13:30	5.7	7.3	6.0	6.3
	14:00	5.8	7.6	6.1	6.5
	14:30	7.5	8.7	6.5	7.6
	15:00	4.4	5.4	3.3	4.4
	15:30	6.9	7.1	4.4	6.1
	16:00	0.1	1.5	4.0	0.1
	17:00	03.9	15.0	19 1	13 0
	17.20	2	12.9	0.7	40.6
	18:00	1.25	24.2	18.6	47.6/
10	MOTO	1000	全	1.0.0	6.3
平	均值	-	散水時		6.3
	Longi	1	毕散水田	7	6.3

(膜材:FGT-800、厚 0.8mm(C社))

Un: 膜面と点pとの立体角投射率 (%)
 Uw: 窓面と点pとの立体角投射率 (%)
 pi: アリーナ内部構成第 i 部材の反射率
 p1: 窓中央高さより下半のアリーナ内面平均反射率
 p2: 窓中央高さより上半のアリーナ内面平均反射率
 てn: 膜の光透過率
 てw: 透明窓の光透過率

[参考文献]

- 1)石川幸雄他: 膜構造屋根散水システムの熱的効果 その1、日本建築学会大会梗概集、1989年
- 2)石川幸雄他: 膜構造屋根散水システムの熱的効果 その2、日本建築学会大会梗概集、1989年
- 3)石川幸雄他: 膜構造屋根散水システムの熱的効果 その3、日本建築学会大会梗概集、1990年
- 4)石川幸雄他:屋根散水と自然換気による自然冷房 複合効果の検討、空気調和・衛生工学会論文集、
 No. 26、1984年
- 5)井川憲男: 膜構造物内の採光シミュレーション、
 空気調和・衛生工学、第63巻、第2号、1989年2月
 6)松浦邦男: 建築照明、1975、共立出版

THERMAL EFFECT OF EVAPORATIVE COOLING BY SPRAYING WATER AGAINST MEMBRANE-STRUCTURED ROOF

YUKIO ISHIKAWA *1

SYNOPSIS

With the aim of embodying its educational policy whereby emphasis is placed on a favorable relationship with nature, Hiroshima Gakuin High School has adopted a tension membrane-structured roof for its Xavier gymnasium, to create a bright space integrated with the campus which is surrounded with greenery. This roof is framed with pieces of glue-laminated lumber, over which a 0.8mm thick single-layered membrane composed of glass fiber base sheet coated with teflon is laid. While the membrane-structured roof has the major advantage of being translucent, it also admits the penetration of solar radiation, so sufficient study of the indoor thermal environment in the summer period would be required. Since this facility is a gymnasium for the junior and senior high school students, the plan excluded the use of active cooling, but aimed at planning and implementing the proposed roof spraying system as a means of passive cooling utilizing natural energy. The principles are that water is sprayed onto the membrane roof surface to reduce its temperature through the cooling effect of evaporation into the open air, thereby facilitating the passive cooling of the gymnasium inner space. This paper begins with outlining the roof spraying system by means of evaporative cooling, and discussions on the results of the field measurement of its thermal effect, which is carried out on typical summer days. Through field measurement, the author has proved that roof spraying reduces the indoor PMV and SET*, which further leads to a decrease in PPD. Roof spraying enhances the indoor thermal environment and produces a noticeable passive cooling effect. Furthermore, this study has provided field measurement data representing the lighting characteristics of the single-layered, membranestructured gymnasium.

*1 Chief Research Engineer, Dr.Eng., Takenaka Technical Research Laboratory

その1、自身接筆堂会式会授健康、1989年 196日を可能:第級高原基数水 < 1 + 人の利用なる その3、日本協会でと大会集成券、1994年 196日の原始: 補償自営局部 を 2 × との利用の意 その3、日本信益でかどな使職集 1984年 106日本単四: 見服務水 110時間第日 とく目間消防 加らいきの人気に 登以間相、割引 1 7 会協失業、 2013日 第一路政務的政府後 < 1 × 2 - 1 × 1 での111回名: 職政務的政府後 < 1 × 2 - 1 × 1</p>

-48-