異方張力曲面形状の数値解

鈴木 俊男 !! 半谷 裕彦 '

腹構造の形状解析法として異方張力曲面について検討した。異方張力曲面は等張力曲面よりも膜形状 を決定する自由度が大きい曲面である。異方張力曲面の基礎式を曲面の力の釣合式から導き、その一般 解を求めた。解析例として回転懸垂面とHP曲面を数値解析することによって、本解析法の妥当性を確 認した。

1. はじめに

膜構造を設計する上で、第一の作業として膜面の形 状決定がある。膜面の形状は、力学的に最も安定性が ある等張力曲面とすることが多い。しかし等張力曲面 は境界構造の形態が与えられると一義的に曲面が決定 されるので、膜デザインや設計外力に対する抵抗曲面 としての融通性が小さいという問題点がある。これに 対して、各方向の張力を異なる値に設定することによ り曲面形状を種々に変化させることができる異方張力 曲面[11,[2]は、等張力曲面と共に実用設計上有意義な 曲面といえる。

異方張力曲面の場合には、等張力曲面の場合のよう に曲面積の汎関数が容易に幾何学的考察から求められ ないため、その数値解析的研究は少ない。

本報告では、異方張力曲面の形状解析法に関する定 式化と簡単な数値解析を行い、等張力曲面との性質の 違いを述べる。

2. 異方張力曲面の基礎式

2.1 異方張力曲面の基礎方程式

本論文では、異方張力曲面として次の定義を採用す る。「異方張力曲面とは、微小要素の2辺の切断面に

*1 フジタ工業 技術研究所 主任研究員 *2 東京大学生産技術研究所 教授

作用する応力の方向がそれぞれの切断面に直交し、応 力の大きさが異なる曲面のことをいう。」

これを、図1を用いて示すと、切断面を曲面のパラ メータα, βに沿ってとる場合、異方張力ηα、 η sは、 β, α曲線に対して直交する応力となる。

図1. 異方張力曲面の微小面積

異方張力曲面の基礎方程式を求めるために、α,β 曲線で表わされた曲面の微小部分の力の釣合式を求め まず、曲面を表わす座標をX, Y, Zとすると、 る。

これらは、	次の様なα,	βの函数と	して求め	られる。
X = X	(α,β)			(1-1)

Y = Y	(α,β)	(1-2)
Z = Z	(α,β)	(1-3)

つぎに、曲面の位置ベクトルrは、次式となる。

 $\mathbf{r} = \mathbf{X} \mathbf{e}_{x} + \mathbf{Y} \mathbf{e}_{y} + \mathbf{Z} \mathbf{e}_{z}$ (2)

ここで、 e_x, e_y, e_zはデカルト座標系の各方向の 単位ベクトルである。 (2)を用いて、基底ベクトル g_a, g_b, 法線ベクトルNを求める。

$$\mathbf{g}_{\alpha} = \partial \mathbf{r} / \partial \alpha = \mathbf{X}_{\alpha} \mathbf{e}_{x} + \mathbf{Y}_{\alpha} \mathbf{e}_{y} + \mathbf{Z}_{\alpha} \mathbf{e}_{z} \qquad (3-1)$$

$$\mathbf{g}_{\mathcal{B}} = \partial \mathbf{r} / \partial \beta = \mathbf{X}_{\mathcal{B}} \mathbf{e}_{x} + \mathbf{Y}_{\mathcal{B}} \mathbf{e}_{y} + \mathbf{Z}_{\mathcal{B}} \mathbf{e}_{z} \qquad (3-2)$$

$$\mathbf{N} = \mathbf{g}_{\alpha} \times \mathbf{g}_{\beta} = \begin{bmatrix} \mathbf{x}_{\alpha} & \mathbf{y}_{\alpha} & \mathbf{z}_{\alpha} \\ \mathbf{x}_{\beta} & \mathbf{y}_{\beta} & \mathbf{z}_{\beta} \end{bmatrix}$$
(4)

ここで、 X_{α} , X_{s} , …は $X o \alpha$ 、 β に関する偏微分 を表わす。

また、 ga, gs, Nの単位ベクトルを次に示す。

$$\mathbf{t}_{\alpha} = \mathbf{g}_{\alpha} / |\mathbf{g}_{\alpha}| = \frac{1}{\sqrt{g_{\alpha\alpha}}} \left(\mathbf{X}_{\alpha} \mathbf{e}_{x} + \mathbf{Y}_{\alpha} \mathbf{e}_{y} + \mathbf{Z}_{\alpha} \mathbf{e}_{z} \right)$$
(5-1)

$$\mathbf{t}_{\mathcal{S}} = \mathbf{g}_{\mathcal{S}} / |\mathbf{g}_{\mathcal{S}}| = \frac{1}{\sqrt{\mathbf{g}_{\mathcal{S}\mathcal{S}}}} \left(\mathbf{X}_{\mathcal{S}} \mathbf{e}_{\times} + \mathbf{Y}_{\mathcal{S}} \mathbf{e}_{\vee} + \mathbf{Z}_{\mathcal{S}} \mathbf{e}_{z} \right)$$
(5-2)

$$\mathbf{n} = \mathbf{N} / |\mathbf{N}| = \frac{1}{\mathrm{H}} \left\{ \left(\mathbf{Y}_{\alpha} \mathbf{Z}_{\beta} \cdot \mathbf{Z}_{\alpha} \mathbf{Y}_{\beta} \right) \mathbf{e}_{x} + \left(\mathbf{Z}_{\alpha} \mathbf{X}_{\beta} \cdot \mathbf{X}_{\alpha} \mathbf{Z}_{\beta} \right) \mathbf{e}_{y} + \left(\mathbf{X}_{\alpha} \mathbf{Y}_{\beta} \cdot \mathbf{Y}_{\alpha} \mathbf{X}_{\beta} \right) \mathbf{e}_{z} \right\}$$

$$\left\{ \mathbf{x}_{\alpha} \mathbf{Y}_{\beta} \cdot \mathbf{y}_{\alpha} \mathbf{X}_{\beta} \right\} = \mathbf{z}$$

$$\left\{ \mathbf{x}_{\alpha} \mathbf{y}_{\beta} \cdot \mathbf{y}_{\alpha} \mathbf{x}_{\beta} \mathbf{z}_{\beta} \right\}$$

$$\left\{ \mathbf{x}_{\alpha} \mathbf{y}_{\beta} \cdot \mathbf{y}_{\alpha} \mathbf{x}_{\beta} \mathbf{z}_{\beta} \right\}$$

$$\left\{ \mathbf{z}_{\alpha} \mathbf{z}_{\beta} \cdot \mathbf{z}_{\alpha} \mathbf{z}_{\beta} \mathbf{z}_{\beta} \right\}$$

$$zz\overline{c}, H = \sqrt{g_{aa}g_{BB}-g_{aB}^2}$$
(7)

また、 g aa, g ßß, g aßは第一基本計量で、次式で 与えられる。

 $g_{\alpha\alpha} = g_{\alpha} \cdot g_{\alpha} = X_{\alpha}^{2} + Y_{\alpha}^{2} + Z_{\alpha}^{2}$ $g_{\beta\beta} = g_{\beta} \cdot g_{\beta} = X_{\beta}^{2} + Y_{\beta}^{2} + Z_{\beta}^{2}$ (8-1)
(8-2)

 $\mathbf{g}_{\alpha\beta} = \mathbf{g}_{\alpha} \cdot \mathbf{g}_{\beta} = \mathbf{X}_{\alpha} \mathbf{X}_{\beta} + \mathbf{Y}_{\alpha} \mathbf{Y}_{\beta} + \mathbf{Z}_{\alpha} \mathbf{Z}_{\beta}$ (8-3)

更に、図1より切断面に直交方向の単位ベクトル t^α と t^sを求める。

$$\mathbf{t}^{\alpha} = \mathbf{n} \times \mathbf{t}_{\alpha}$$

$$= \frac{1}{\sqrt{g_{\alpha\alpha}}} \cdot \frac{1}{H} \left\{ \begin{array}{l} (X_{\beta}g_{\alpha\alpha} \cdot g_{\alpha\beta}X_{\alpha}) \cdot e_{\times} \\ + (Y_{\beta}g_{\alpha\alpha} \cdot g_{\alpha\beta}Y_{\alpha}) \cdot e_{\times} \\ + (Z_{\beta}g_{\alpha\alpha} \cdot g_{\alpha\beta}Y_{\alpha}) \cdot e_{\times} \\ + (Z_{\beta}g_{\alpha\alpha} \cdot g_{\alpha\beta}Z_{\alpha}) \cdot e_{\times} \end{array} \right\}$$
(9-1)
$$\mathbf{t}^{\beta} = \mathbf{t}_{\beta} \times \mathbf{n} \\ = \frac{1}{\sqrt{g_{\beta\beta}}} \cdot \frac{1}{H} \left\{ \begin{array}{l} (X_{\alpha}g_{\beta\beta} \cdot g_{\alpha\beta}X_{\beta}) \cdot e_{\times} \\ + (Y_{\alpha}g_{\beta\beta} \cdot g_{\alpha\beta}Y_{\beta}) \cdot e_{\times} \end{array} \right\}$$

+ $(Z_{\alpha}g_{\beta\beta}-g_{\alpha\beta}Z_{\beta})e_z$ (9-2)

次に、等張力がt^α, t⁸方向に作用したときの微小 部分の力の釣合いを求めると、

となる。これを更に書き下して、 ex, ey, ezの係数 に対して整理すると以下の様な微分方程式が得られる。

$$\begin{array}{l} n \, \alpha \, g \, _{\mathcal{S}\mathcal{S}} X \, _{\alpha \alpha^{-}} \left(n \, _{\alpha^{+}} n \, _{\mathcal{S}} \right) \, g \, _{\alpha \mathcal{S}} X \, _{\alpha \mathcal{S}} + n \, _{\mathcal{S}} g \, _{\alpha \alpha} X \, _{\mathcal{S}\mathcal{S}} = 0 \\ n \, _{\alpha} \, g \, _{\mathcal{S}\mathcal{S}} Y \, _{\alpha \alpha^{-}} \left(n \, _{\alpha^{+}} n \, _{\mathcal{S}} \right) \, g \, _{\alpha \mathcal{S}} Y \, _{\alpha \mathcal{S}} + n \, _{\mathcal{S}} g \, _{\alpha \alpha} Y \, _{\mathcal{S}\mathcal{S}} = 0 \\ n \, _{\alpha} \, g \, _{\mathcal{S}\mathcal{S}} Z \, _{\alpha \alpha^{-}} \left(n \, _{\alpha^{+}} n \, _{\mathcal{S}} \right) \, g \, _{\alpha \mathcal{S}} Z \, _{\alpha \mathcal{S}} + n \, _{\mathcal{S}} g \, _{\alpha \alpha} Z \, _{\mathcal{S}\mathcal{S}} = 0 \\ \end{array}$$

$$(12)$$

上式は、未知量がX、Y、Zに関する準線形の連立 2階非線形偏微分方程式であり、この式が異方張力曲 面の基礎方程式となる。

2.2 異方張力曲面の一般解

(12) で表わされた異方張力曲面の基礎方程式にお いて、 2階偏微分 $X_{\alpha\alpha}$, $Y_{\alpha\alpha}$, $Z_{\alpha\alpha}$ 等の係数 $g_{\alpha\alpha}$, g_{SS} , $g_{\alpha S}$ は、 1 階偏微分の2乗を含む非線形項となつ ており、このままでは解を見い出すことができない。 しかし、これは楕円型偏微分方程式に属する方程式で あり、独立変数 (α , β) を、

 $\xi = \phi \quad (\alpha, \beta) \tag{13-1}$

 $\eta = \psi \ (\alpha, \beta) \tag{13-2}$

なる関係の下に、(ξ,η)に変換することにより、標 準型の偏微分方程式に変換することができる。すなわ ち(12)は等温直交変換関係式

$g_{\xi\xi} = g_{\eta\eta}$	(14-1)

-2 -

$$n_{\alpha} \frac{\partial^2 \chi}{\partial \xi^2} + n_{\beta} \frac{\partial^2 \chi}{\partial \eta^2} = 0$$
(15-1)

$$n_{\alpha} \frac{\partial^{2} Y}{\partial \xi^{2}} + n_{s} \frac{\partial^{2} Y}{\partial \eta^{2}} = 0 \qquad (15-2)$$

$$n_{\alpha} \frac{\partial^2 Z}{\partial \xi^2} + n_{\beta} \frac{\partial^2 Z}{\partial \eta^2} = 0$$
 (15-3)

に変換される。

上式は、X,Y,Zに関して、同一の2階線形微分 方程式となっている。したがって、X,Y,Zは、次 の方程式の解a (ξ , η)を共通の解としてもつことにな る。

$$n_{\alpha} \frac{\partial^2 a}{\partial \xi^2} + n_{\beta} \frac{\partial^2 a}{\partial \eta^2} = 0$$
 (16)

そして、X, Y, Zはaの函数として次の様に表わ すことができる。

$X = f_1 (a)$	(17-1)
$Y = f_{2}(a)$	(17-2)
$Z = f_3 (a)$	(17-3)

上式から、X,Y,Zは互いに独立した変数ではな く、aという共通の函数によって結び付けられた互い に従属関係にある変数であることがわかる。

次に、函数 f₁ (a) ~ f₃ (a) の形式を求める。た とえば、 f₁ (a) は次の様になる。

(17-1)を(15-1)に代入すると、

$$n_{\alpha} \frac{\partial^2 f_1}{\partial \xi^2} + n_{\beta} \frac{\partial^2 f_1}{\partial \eta^2} = 0$$
 (18)

$$\frac{\partial f_1}{\partial \xi} = \frac{df_1}{da} \frac{\partial a}{\partial \xi}$$
(19-1)

$$\frac{\partial \mathbf{f}_1}{\partial \mathcal{D}} = \frac{\mathbf{d} \mathbf{f}_1}{\mathbf{d} \mathbf{a}} \frac{\partial \mathbf{a}}{\partial \mathcal{D}}.$$
 (19-2)

$$\frac{\partial^2 \mathbf{f}_1}{\partial \xi^2} = \frac{\partial}{\partial \xi} \left(\frac{\mathbf{d} \mathbf{f}_1}{\mathbf{d} \mathbf{a}} \right) \cdot \frac{\partial \mathbf{a}}{\partial \xi} + \frac{\mathbf{d} \mathbf{f}_1}{\mathbf{d} \mathbf{a}} \cdot \frac{\partial}{\partial \xi} \left(\frac{\partial \mathbf{a}}{\partial \xi} \right)$$
$$= \frac{\mathbf{d}^2 \mathbf{f}_1}{\mathbf{d} \mathbf{a}^2} \left(\frac{\partial \mathbf{a}}{\partial \xi} \right)^2 + \frac{\mathbf{d} \mathbf{f}_1}{\mathbf{d} \mathbf{a}} \cdot \frac{\partial^2 \mathbf{a}}{\partial \xi^2}$$
(19-3)

$$\frac{\partial^2 \mathbf{f}_1}{\partial \eta^2} = \frac{\mathbf{d}^2 \mathbf{f}_1}{\mathbf{d} \mathbf{a}^2} \left(\frac{\partial \mathbf{a}}{\partial \eta}\right)^2 + \frac{\mathbf{d} \mathbf{f}_1}{\mathbf{d} \mathbf{a}} \cdot \frac{\partial^2 \mathbf{a}}{\partial \eta^2}$$
(19-4)

(19-3), (19-4)を(18)に代入すると次式となる。

$$\frac{d^{2}f_{1}}{da^{2}}\left\{ \begin{array}{c} \mathbf{n}_{\alpha}\left(\frac{\partial \mathbf{a}}{\partial\xi}\right)^{2} + \mathbf{n}_{\beta}\left(\frac{\partial \mathbf{a}}{\partial\eta}\right)^{2} \right\} \\ + \frac{df_{1}}{da}\left(\mathbf{n}_{\alpha}\frac{\partial^{2}\mathbf{a}}{\partial\xi^{2}} + \mathbf{n}_{\beta}\frac{\partial^{2}\mathbf{a}}{\partial\eta^{2}} \right) = 0 \quad (20)$$

ところで、左辺第2項の $\left(n_{\alpha}\frac{\partial^{2}a}{\partial\xi^{2}} + n_{\beta}\frac{\partial^{2}a}{\partial\eta^{2}}\right)$ は、 (16) より 0 となるが、 左辺第1項の $\left\{n_{\alpha}\left(\frac{\partial a}{\partial\xi}\right)^{2} + n_{\beta}\left(\frac{\partial a}{\partial\eta}\right)^{2}\right\}$ は一般的 に0とはならないので、上式が成立するためには、 d²f₁

$$\frac{\mathrm{d} \mathrm{d} \mathrm{d}}{\mathrm{d} \mathrm{d}^2} = 0 \tag{21}$$

なる関係が成立しなければならない。

(21) を2回積分すると、

$$f_1 = c_1 a + c_2$$
 (22-1)

となり、 f 1の形式は a に関して一次式となることがわ かる。ここで、C1, C2は積分定数である。

同様に、	f 2,	f3についても	次のように表わせる。
f 2=	d 1 a +	d 2	(22-2)
f 3=	e1a+	e 2	(22-3)

次に、パラメータ(ξ,η)で表わされた上式を、元 のパラメータ(α,β)に変換すると、最終的に異方張 力曲面の基礎式(12)の一般解は、次式の形式となる。

$X = \lambda$	(α,β)	a	(α,β)	+ x ø	(α,β)	(23-1)
$Y = \mu$	(α,β)	a	(α,β)	+ y ø	(α,β)	(23-2)
Z = v	(α,β)	a	(α,β)	+ Z 0	(α,β)	(23-3)

ここで、 a (α, β) が未知量で、 λ , μ , ν , x_{θ} , y_{θ} , z_{θ} は、初期条件によって定められる定数である。

また、上式の物理的意味は、図2で示されるように x₀, y₀, z₀を初期曲面とし、 λ , μ , ν を初期曲面 で設定された方向余弦としたとき、異方張力曲面を表 わす座標X, Y, Zは、 初期曲面上の座標 x₀, y₀, z₀と方向余弦方向の距離 a の和として求められること である。

図2. 曲面を決定する未知量 a とその方向余弦

2.3 異方張力曲面の変分式

ここでは、異方張力曲面の変分式を求める。まず、 異方張力曲面の基礎方程式を求める過程の式(11)を 再記する。

 $\frac{\partial}{d\alpha} \left[\begin{array}{c} \frac{\mathbf{n} \alpha}{\mathbf{H}} & \left\{ \left(\mathbf{X}_{\alpha} \mathbf{g}_{SS}^{-} \mathbf{g}_{\alpha B} \mathbf{X}_{S} \right) \mathbf{e}_{x} \\ & + \left(\mathbf{Y}_{\alpha} \mathbf{g}_{SS}^{-} \mathbf{g}_{\alpha B} \mathbf{Y}_{S} \right) \mathbf{e}_{y} \\ & + \left(\mathbf{Z}_{\alpha} \mathbf{g}_{SS}^{-} \mathbf{g}_{\alpha S} \mathbf{Z}_{S} \right) \mathbf{e}_{z} \right\} \right] \\ & + \frac{\partial}{d\beta} \left[\begin{array}{c} \frac{\mathbf{n} B}{\mathbf{H}} & \left\{ \left(\mathbf{X}_{S} \mathbf{g}_{\alpha S}^{-} \mathbf{g}_{\alpha S} \mathbf{X}_{\alpha} \right) \mathbf{e}_{x} \\ & + \left(\mathbf{Y}_{S} \mathbf{g}_{\alpha \alpha}^{-} \mathbf{g}_{\alpha S} \mathbf{Y}_{\alpha} \right) \mathbf{e}_{y} \\ & + \left(\mathbf{Z}_{S} \mathbf{g}_{\alpha \alpha}^{-} \mathbf{g}_{\alpha S} \mathbf{Z}_{\alpha} \right) \mathbf{e}_{z} \right\} \right] = 0 \\ & (24) \end{array}$

ここで、 ex, ey, ezの係数についてまとめると、 たとえば exの係数は次式となる。

 $\frac{\partial}{\mathrm{d}\alpha} \left[\begin{array}{c} \frac{\mathrm{n}_{\alpha}}{\mathrm{H}} \\ \end{array} \left\{ \left(\mathrm{X}_{\alpha} \mathrm{g}_{\mathcal{B}\mathcal{B}}^{-} \mathrm{g}_{\alpha\mathcal{B}} \mathrm{X}_{\mathcal{B}} \right) \right] \right]$ $+ \frac{\partial}{\partial B} \left(\frac{\mathbf{n}_{B}}{\mathbf{H}} \left\{ \left(\mathbf{X}_{B} \mathbf{g}_{\alpha B} - \mathbf{g}_{\alpha B} \mathbf{X}_{\alpha} \right) \right\} \right)$ = 0 (25) ところで、上式の第1項と第2項は、次の様になる。 $\frac{\partial}{\partial \alpha} \left(\frac{\mathbf{n}_{\alpha}}{\mathbf{H}} \left(\mathbf{X}_{\alpha} \mathbf{g}_{\mathcal{B}\mathcal{B}} - \mathbf{g}_{\alpha \mathcal{B}} \mathbf{X}_{\mathcal{B}} \right) \right) = \frac{\partial}{\partial \alpha} \left(\mathbf{X}_{\alpha} \mathbf{g}_{\mathcal{B}\mathcal{B}} - \mathbf{g}_{\alpha \mathcal{B}} \mathbf{X}_{\mathcal{B}} \right)$ $\partial(n_{\alpha}H)$ aXa (26-1) $\frac{\partial}{\partial \beta} \left(\frac{\mathbf{n}_{\mathcal{B}}}{\mathbf{H}} \left(\mathbf{X}_{\mathcal{B}} \mathbf{g}_{\alpha \alpha} - \mathbf{g}_{\alpha \beta} \mathbf{X}_{\alpha} \right) \right) = \frac{\partial}{\partial \beta} \left(\frac{\partial \left(\mathbf{n}_{\mathcal{B}} \mathbf{H} \right)}{\partial \mathbf{X}_{\mathcal{B}}} \right)$ (26 - 2)したがって、(26-1)~(26-2)を(25)に代入し τ. $\frac{\partial}{\partial \alpha} \left(\frac{\partial (\mathbf{n}_{\alpha} \mathbf{H})}{\partial X_{\alpha}} \right) + \frac{\partial}{\partial \beta} \left(\frac{\partial (\mathbf{n}_{\beta} \mathbf{H})}{\partial X_{\beta}} \right)$ = 0(27 - 1)同様に、ev、ezの係数についても、 $-\frac{\partial}{\partial \alpha} \left(\frac{\partial (\mathbf{n}_{\alpha} \mathbf{H})}{\partial Y_{\alpha}} \right) + \frac{\partial}{\partial \beta} \left(\frac{\partial (\mathbf{n}_{\beta} \mathbf{H})}{\partial Y_{\beta}} \right) = 0$ (27 - 2) $\frac{\partial}{\partial \alpha} \left(\frac{\partial (\mathbf{n}_{\alpha} \mathbf{H})}{\partial \mathbf{Z}_{\alpha}} \right) + \frac{\partial}{\partial \beta} \left(\frac{\partial (\mathbf{n}_{\beta} \mathbf{H})}{\partial \mathbf{Z}_{\beta}} \right)$ | = 0(27 - 3)ここで、上式の各項にそれぞれ座標の変分δX、 δΥ、δΖをかけて積分し、さらに境界条件項を加え た変分式をつくる。

$$\int_{\alpha} \int_{\beta} \left(\left(\frac{\partial}{\partial \alpha} \left(\frac{\partial (\mathbf{n}_{\alpha} \mathbf{H})}{\partial \mathbf{X}_{\alpha}} \right) + \frac{\partial}{\partial \beta} \left(\frac{\partial (\mathbf{n}_{\beta} \mathbf{H})}{\partial \mathbf{X}_{\beta}} \right) \right) \delta \mathbf{X} + \left(\frac{\partial}{\partial \alpha} \left(\frac{\partial (\mathbf{n}_{\alpha} \mathbf{H})}{\partial \mathbf{Y}_{\alpha}} \right) + \frac{\partial}{\partial \beta} \left(\frac{\partial (\mathbf{n}_{\beta} \mathbf{H})}{\partial \mathbf{Y}_{\beta}} \right) \right) \delta \mathbf{Y}$$

$$+ \left(\frac{\partial}{\partial \alpha} \left(\frac{\partial (\mathbf{n}_{\alpha} \mathbf{H})}{\partial \mathbf{Z}_{\alpha}}\right) + \frac{\partial}{\partial \beta} \left(\frac{\partial (\mathbf{n}_{\beta} \mathbf{H})}{\partial \mathbf{Z}_{\beta}}\right)\right) \delta \mathbf{Z} \right| d\alpha d\beta$$

$$+ \int_{\alpha} \left[\left(\bar{\mathbf{n}}_{\beta} - \frac{1}{\sqrt{g_{\alpha\alpha}}} \frac{\partial (\mathbf{n}_{\beta} \mathbf{H})}{\partial \mathbf{X}_{\beta}}\right) \delta \mathbf{X} + \left(\bar{\mathbf{n}}_{\beta} - \frac{1}{\sqrt{g_{\alpha\alpha}}} \frac{\partial (\mathbf{n}_{\beta} \mathbf{H})}{\partial \mathbf{Y}_{\beta}}\right) \delta \mathbf{Y} + \left(\bar{\mathbf{n}}_{\beta} - \frac{1}{\sqrt{g_{\alpha\alpha}}} \frac{\partial (\mathbf{n}_{\beta} \mathbf{H})}{\partial \mathbf{Z}_{\beta}}\right) \delta \mathbf{Z} \right] \sqrt{g_{\alpha\alpha}} d\alpha$$

$$+ \int_{\beta} \left[\left(\bar{\mathbf{n}}_{\alpha} - \frac{1}{\sqrt{g_{\beta\beta\beta}}} \frac{\partial (\mathbf{n}_{\alpha} \mathbf{H})}{\partial \mathbf{X}_{\alpha}}\right) \delta \mathbf{X} + \left(\bar{\mathbf{n}}_{\alpha} - \frac{1}{\sqrt{g_{\beta\beta\beta}}} \frac{\partial (\mathbf{n}_{\alpha} \mathbf{H})}{\partial \mathbf{X}_{\alpha}}\right) \delta \mathbf{X} + \left(\bar{\mathbf{n}}_{\alpha} - \frac{1}{\sqrt{g_{\beta\beta\beta}}} \frac{\partial (\mathbf{n}_{\alpha} \mathbf{H})}{\partial \mathbf{X}_{\alpha}}\right) \delta \mathbf{X} + \left(\bar{\mathbf{n}}_{\alpha} - \frac{1}{\sqrt{g_{\beta\beta\beta}}} \frac{\partial (\mathbf{n}_{\alpha} \mathbf{H})}{\partial \mathbf{Z}_{\alpha}}\right) \delta \mathbf{Z} \right] \sqrt{g_{\beta\beta}} d\beta$$

$$= 0$$

$$(28)$$

$$\zeta \zeta \zeta \zeta = \bar{\mathbf{n}}_{\alpha} = \bar{\mathbf{n}}_{\beta} = \tilde{\mathbf{R}} \mathbf{A} \mathcal{F} \mathbf{A}$$

ここで、 \bar{n}_{α} 、 \bar{n}_{β} 等はそれぞれ境界 β = β , α = $\bar{\alpha}$ における境界反力のX方向の分力を表す。

 $\sqrt{\bar{n}_{\alpha}^{2} + \bar{n}_{\alpha}^{2} + \bar{n}_{\alpha}^{2}} = n_{\alpha} \qquad (29-1)$

$$\sqrt{\bar{n}_{s}}^{2} + \bar{n}_{s}^{2} + \bar{n}_{s}^{2} = n_{s}$$
 (29-2)

境界面に作用している内力 $\frac{1}{\sqrt{g_{\alpha\alpha}}} - \frac{\partial (n_{\beta}h)}{\partial X_{\beta}}$ 等は (9-1) で表される断面力 $n_{\beta}t^{\alpha}$ のX方向成分等で ある。

次に、 (28) を書き換えると次式となる。

$$\int_{\alpha} \int_{\beta} \left[\left(\frac{\partial}{\partial \alpha} \left(\frac{\partial (n_{\alpha}H)}{\partial X_{\alpha}} \right) + \frac{\partial}{\partial \beta} \left(\frac{\partial (n_{\beta}H)}{\partial X_{\beta}} \right) \right) \delta X + \left(\frac{\partial}{\partial \alpha} \left(\frac{\partial (n_{\alpha}H)}{\partial Y_{\alpha}} \right) + \frac{\partial}{\partial \beta} \left(\frac{\partial (n_{\beta}H)}{\partial Y_{\beta}} \right) \right) \delta Y + \left(\frac{\partial}{\partial \alpha} \left(\frac{\partial (n_{\alpha}H)}{\partial Z_{\alpha}} \right) + \frac{\partial}{\partial \beta} \left(\frac{\partial (n_{\beta}H)}{\partial Z_{\beta}} \right) \right) \delta Z \right] d\alpha d\beta$$

$$- \int_{\alpha} \left[\left(\frac{\partial (n_{\beta}H)}{\partial X_{\beta}} \right) \delta X + \left(\frac{\partial (n_{\beta}H)}{\partial Y_{\beta}} \right) \delta Y + \left(\frac{\partial (n_{\beta}H)}{\partial Z_{\beta}} \right) \delta Z \right] d\alpha$$

$$- \int_{\beta} \left[\left(\frac{\partial (n_{\alpha}H)}{\partial X_{\alpha}} \right) \delta X + \left(\frac{\partial (n_{\alpha}H)}{\partial Y_{\alpha}} \right) \delta Y + \left(\frac{\partial (n_{\alpha}H)}{\partial Z_{\alpha}} \right) \delta X + \left(\frac{\partial (n_{\alpha}H)}{\partial Y_{\alpha}} \right) \delta Y + \left(\frac{\partial (n_{\alpha}H)}{\partial Z_{\alpha}} \right) \delta Z \right] d\beta$$

$$-\int_{\alpha}\int_{\beta}\left[\frac{\partial(\mathbf{n}_{\alpha}\mathbf{H})}{\partial \mathbf{X}_{\alpha}}\delta \mathbf{X}_{\alpha} + \frac{\partial(\mathbf{n}_{\beta}\mathbf{H})}{\partial \mathbf{X}_{\beta}}\delta \mathbf{X}_{\beta} + \frac{\partial(\mathbf{n}_{\alpha}\mathbf{H})}{\partial \mathbf{Y}_{\alpha}}\delta \mathbf{Y}_{\alpha} + \frac{\partial(\mathbf{n}_{\beta}\mathbf{H})}{\partial \mathbf{Y}_{\beta}}\delta \mathbf{Y}_{\beta} + \frac{\partial(\mathbf{n}_{\alpha}\mathbf{H})}{\partial \mathbf{Z}_{\alpha}}\delta \mathbf{Z}_{\alpha} + \frac{\partial(\mathbf{n}_{\beta}\mathbf{H})}{\partial \mathbf{Z}_{\beta}}\delta \mathbf{Z}_{\beta}\right] d\alpha d\beta + \int_{\alpha}\left[\bar{\mathbf{n}}_{\beta}\delta \mathbf{X} + \bar{\mathbf{n}}_{\beta}\delta \mathbf{Y} + \bar{\mathbf{n}}_{\beta}\delta \mathbf{Z}\right]\sqrt{g_{\alpha\alpha}}d\alpha + \int_{\beta}\left[\bar{\mathbf{n}}_{\alpha}\delta \mathbf{X} + \bar{\mathbf{n}}_{\alpha}\delta \mathbf{Y} + \bar{\mathbf{n}}_{\alpha}\delta \mathbf{Z}\right]\sqrt{g_{\beta\beta}}d\beta = 0$$
(32)

ここで、境界条件として幾何学的境界条件を考えると 境界上での座標の変分は0となるから、(32)の第2、 第3項はなくなり、結局次式となる。

$$\int_{\alpha} \int_{\beta} \left[n_{\alpha} \left(\frac{\partial H}{\partial X_{\alpha}} \delta X_{\alpha} + \frac{\partial H}{\partial Y_{\alpha}} \delta Y_{\alpha} + \frac{\partial H}{\partial Z_{\alpha}} \delta Z_{\alpha} \right) \right]$$
$$n_{\beta} \left(\frac{\partial H}{\partial X_{\beta}} \delta X_{\beta} + \frac{\partial H}{\partial Y_{\beta}} \delta Y_{\beta} + \frac{\partial H}{\partial Z_{\beta}} \delta Z_{\beta} \right) d\alpha d\beta$$
$$= 0$$
(33)

上式が、異方張力曲面の微分方程式を基とした変分 式である。この式は等張力曲面の様に汎関数として表 現されていないが、レーリーリッツ法等の離散化手法 を適用する場合の基本式と見なすことができる。また、 この式は弾性論における仮想仕事式に相当する式であ る。 2.4 デカルト座標系と円柱座標系における異方張 力曲面式

(26) で示された異方張力曲面の一般解の内容を明 確にするために、ここでは、デカルト座標系と円柱座 標系における表現を与える。

まず、デカルト座標で表された異方張力曲面を考え る。 (図3参照)

曲面パラメータ	$\alpha = x$,	$\beta = y$		(34)
方向余弦	$\lambda = 0$,	$\mu = 0$, ν	=1	(35)
初期曲面	$x_0 = \alpha$,	$y_0 = \beta$,	z @ = 0	(36)
(34) ~ (36) を	(26) に	代入する。		
$X = 0 \cdot a + \alpha = x$	- - - 		(37-1)
$Y = 0 \cdot a + \beta = y$	Sec. (0)		- (:)(37-2)
$Z = 1 \cdot a + 0 = a$	0 aon=		(37-3)
位置ベクトル				
$\mathbf{r} = \mathbf{x} \mathbf{e}_{\star} + \mathbf{y} \mathbf{e}$	y+a ez			(38)

図3. デカルト座標系による曲面表示

第1基本計量

	$g_x = 1 \cdot e_x + 0 \cdot e_y + a_x e_z$	(39-1)
	$g_y = 0 \cdot e_x + 1 \cdot e_y + a_y e_z$	(39-2)
	$g_{xx} = g_x \cdot g_x = 1 + a_x^2$	(40-1)
	$g_{yy} = g_{y} \cdot g_{y} = 1 + a_{y}^{2}$	(40-2)
	$g_{xy} = a_x a_y$	(40-3)
•	$H = \sqrt[4]{g_{xx}g_{yy}-g_{xy}^2}$	

$$= \sqrt{(1+a_x^2)(1+a_y^2)} - a_x^2 a_y^2$$

$$= \sqrt[4]{1 + a_x^2 + a_y^2}$$
 (41)

上式を(36)に代入するとデカルト座標系で表され た異方張力曲面の変分式は次式により求められる。 δ Π=

 $\int_{y_1}^{y_2} \int_{x_1}^{x_2} \left[n_{\times} \left(\frac{\partial H}{\partial X_x} \delta X_x + \frac{\partial H}{\partial Y_x} \delta Y_x + \frac{\partial H}{\partial Z_x} \delta Z_x \right) \right]$

— 5 —

 $\mathbf{r} = \cos\theta \cdot \mathbf{a} \, \mathbf{e}_{\mathbf{x}} + \sin\theta \cdot \mathbf{a} \, \mathbf{e}_{\mathbf{y}} + \mathbf{z} \cdot \mathbf{e}_{\mathbf{z}} \tag{47}$

図4. 円柱座標系による曲面表示

第1基本計量	
$g_{\theta} = (-\sin\theta \cdot a + \cos\theta \cdot a_{\theta}) e_{\times}$	
+ $(\cos\theta \cdot a + \sin\theta \cdot a_{\theta}) e_{y}$	
+ 0.ez	(48-1)
$g_z = \cos \theta \cdot a_z e_x + \sin \theta \cdot a_z e_y + 1 \cdot e_z$	(48-2)
$\therefore g_{\theta\theta} = g_{\theta} \cdot g_{\theta} = a^2 + a_{\theta}^2$	(49-1)
$g_{zz} = g_{z} \cdot g_{z} = a_{z}^{2} + 1$	(49-2)
$\mathbf{g}_{\theta z} = \mathbf{a}_{\theta} \mathbf{a}_{z} = \mathbf{a}_{\theta} \mathbf{a}_{z} + \mathbf{a}_{\theta} $	(49-3)
$\therefore \mathbf{H} = \sqrt{\mathbf{g}_{\theta\theta} \mathbf{g}_{zz}^2 \cdot \mathbf{g}_{\theta z}^2}$	
$= \sqrt{(a^2 + a_{\theta^2})(a_z^2 + 1) - (a_{\theta}a_z)^2}$	
$= \sqrt[4]{a^2 + a^2 a_z^2 + a_\theta^2}$	(50)

いま、軸対称回転曲面を考えると、 $a_{\theta}=0$ であり、 H= $\sqrt[4]{a^2+a^2a_z^2} = a\sqrt[4]{1+a_z^2}$ (51) 上式を (36) に代入すると円柱座標系で表された異 方張力曲面の変分式は次式により求められる。 $\delta \Pi =$

$$\int_{0}^{2} \int \frac{L/2}{-L/2} \left[n_{\theta} \left(\frac{\partial H}{\partial X_{\theta}} \delta X_{\theta} + \frac{\partial H}{\partial Y_{\theta}} \delta Y_{\theta} + \frac{\partial H}{\partial Z_{\theta}} \delta Z_{\theta} \right) \right. \\ \left. + n_{z} \left(\frac{\partial H}{\partial X_{z}} \delta X_{z} + \frac{\partial H}{\partial Y_{z}} \delta Y_{z} + \frac{\partial H}{\partial Z_{z}} \delta Z_{z} \right) \right] d\theta dz \\ = 2\pi \int_{1}^{L/2} \left[n_{\theta} a \left(1 + a_{z}^{2} \right) \delta a + n_{z} a^{2} a_{z} \delta a_{z} \right] dz \\ = 0$$

$$(52)$$

上式は、n_θ=n_zとすれば軸対称回転曲面の等張力曲 面を表す汎函数の変分式と一致する。

3. 異方張力曲面の数値解法

 1 レーリーリッツ法による数値解法 異方張力曲面を表わす変分式(33)にレーリーリッ ツ法を適用する。ここでは、軸対称問題を考える。 仮定関数を次式で表す。

a = φ₀(z) + ∑a_i · φ_i(z) = φ₀(z) + ^t φ(z) · a (53)
 ここで、φ₀(z)、φ_i(z) (i=1,n)は基底関数列、a_i
 (i=1,n)は未知変数列である。またφ(z)、 aは次の通り。

$$\phi(z) = {}^{t} [\phi_{1}(z) \phi_{2}(z) \cdots \phi_{n}(z)]$$
 (54)

$$\mathbf{a} = {}^{\mathsf{t}} \begin{bmatrix} \mathsf{a}_1 & \mathsf{a}_2 & \cdots & \cdots & \mathsf{a}_n \end{bmatrix}$$
(55)

$$z = d\phi_{\theta}(z)/dz + \sum_{a \in d} \phi_{\theta}(z)/dz$$

$$= d\phi_a(z) + d^t \phi(z) / dz \cdot a$$
(56)

次に、aの変分を求める。

$$\delta a = {}^{t} \phi \cdot \delta a \tag{57}$$

$$\delta_{a_z} = {}^t d\phi(z)/dz \cdot \delta_a = {}^t \phi_z \cdot \delta_a$$
 (58)
(53)、(56)~(58)を(52)に代入する。

$$\delta \Pi = {}^{t} \delta a 2\pi \int_{-L/2}^{L/2} \frac{1}{H} \left[n_{\theta} a \left(1 + a_{z}^{2} \right) \phi \right]$$

ここで、 δ aは任意の値を取り得るので、停留式は $\int_{-L/2}^{L/2} \frac{1}{H} \left[n_{\theta} a \left(1 + a_{z}^{2} \right) \phi \right]$

az dz] dz

-6-

= 0

= 0 となる。

次に、ニュートンラブソン法を用いるときの	の、増分
方程式を求める。まず、(60)の増分を考える	5.
$\int \frac{L/2}{[\ln \theta a (1+az^2)} \phi + nz a^2 az \phi_z] d($	1/H)
+1/H d [$n_{\theta}a(1+a_{z}^{2})\phi+n_{z}a^{2}a_{z}\phi_{z}$]]	dz
= 0	(61)
上式の増分項は次の様になる。	
$d(1/H) = -1/H^2 dH = -1/H^2 d \not a^2 (1+a_z^2)$	
$=-1/H^2 \cdot 1/H(a(1+a_z^2)+a^2a_z)da$	
ここで、(57)より da='∲'daであるから	
$d(1/H) = -1/H^2 \cdot 1/H(a(1+a_z^2)+a^2a_z)^t \phi \cdot da$	(62)
また、	
d [n _θ a(1+a _z ²) φ+n _z a²a _z φ _z]	
$= \phi n_{\theta} (da (1+a_z^2)+a 2a_z da_z)$	
+¢znz(2ada az+a²daz)	
$= [\phi n_{\theta} ((1 + a_z^2)^t \phi + a_z^t \phi_z)$	
$\phi_z n_z (2a a_z^t \phi + a^{2t} \phi_z)] \cdot da$	(63)
(62)、(63)を増分式(61)に代入する。	
$\left(\int \frac{L/2}{D^{\dagger}} n + 1/H \mathbf{E} \right) da = 0$	(64)
(J-L/2) a 1/1 = L/2 a 2/ a 4 - 0	(01)
ここで、	
$b = n_{\theta} a (1 + a_z^2) \phi + n_z a^2 a_z \phi_z.$	(65)
$u = -1/H^2 \cdot 1/H(a(1+a_z^2)+a^2a_z)^t \phi$	(66)
$\mathbf{E} = \phi \mathbf{n}_{\theta} ((1 + a_z^2)^t \phi + a_z^2 a_z^t \phi_z)$	
$+\phi_z n_z (2a a_z^t \phi + a^{2t} \phi_z)$	(67)
従って、増分方程式は次式となる。	
$\mathbb{K} d\mathbf{a} = d\mathbf{f}$	(68)
ここで、	
$\mathbf{K} = \int_{-1}^{1/2} \mathbf{b}^{t} \mathbf{u} + 1/\mathbf{H} \mathbf{E} d\mathbf{z}$	(69)
J -L/2	
$d\mathbf{f} = \int_{1/H}^{L/2} \left[\mathbf{n}_{\theta} \mathbf{a} \left(1 + \mathbf{a}_{z}^{2} \right) \mathbf{\phi} \right]$	
J -L/2	
$+n_z a^2 a_z \phi_z$] dz	(70)
(68) が各ステップの増分方程式、(70) は	不釣合
≧を表わす。計算は df=0 となるまで反復さ	せる。

3.2 有限要素法による数値解法

ここでは、3角形要素を用いる。

図5に、初期曲面と異方張力曲面上の座標および方 向余弦を示す。

図5. 三角形要素による曲面表示

ここで、 xei, yei, zei: 初期曲面上の節点iの座標 X0e, y0e, Z0e:初期曲面上の要素内部の座標 x:, y:, z:: : 等張力曲面上の節点iの座標 xe, ye, ze:等張力曲面上の要素内部の座標 λxi, λyi, λzi: 節点iの方向余弦 :節点iの距離(未知量) ai た、次の記号を定義する。 x0;=' {x01 x02 x03 y01 y02 y03 Z01 Z02 Z03} (71 - 1)x_{8e} = t { x_{8e} y_{8e} z_{8e}} (71 - 2) $\mathbf{x}_{i} = {}^{t} \{ \mathbf{x}_{1} \ \mathbf{x}_{2} \ \mathbf{x}_{3} \ \mathbf{y}_{1} \ \mathbf{y}_{2} \ \mathbf{y}_{3} \ \mathbf{z}_{1} \ \mathbf{z}_{2} \ \mathbf{z}_{3} \}$ (71 - 3) $\mathbf{x}_{e} = t \{ \mathbf{x}_{e} \ \mathbf{y}_{e} \ \mathbf{z}_{e} \}$ (71 - 4)22 $\Lambda_{x} =$ $\Lambda_z =$ v 2 · (72) $a_{i} = {}^{t} \{a_{1} \ a_{2} \ a_{3}\}$ (73)また、異方張力曲面上の節点座標末は、初期曲面上

の節点座標xa;と節点距離a;とにより、次の様に表わ される。

$$\mathbf{x}_{i} = \mathbf{x}_{0i} + \mathbf{\Lambda} \cdot \mathbf{a}_{i} \tag{74}$$

$$\mathcal{Z} \subset \mathcal{T}, \quad \mathbf{A} = \left\{ \begin{array}{c} \mathbf{A}_{\mathbf{x}} \\ \mathbf{A}_{\mathbf{y}} \\ \mathbf{A}_{\mathbf{z}} \end{array} \right\}$$
(75)

また、図3により、要素内部の座標x。は要素節点座 標x:で表わすことができる。

 $\mathbf{x}_{\circ} = \begin{bmatrix}
1 \cdot \cdot 1 \cdot \cdot 1 \cdot \cdot \\
\cdot \mathbf{x}_{\circ} \cdot \mathbf{x}_{\circ} \cdot \mathbf{x}_{\circ} \cdot \mathbf{x}_{\circ} \\
\cdot \mathbf{y}_{\circ} \cdot \mathbf{y}_{\circ} \cdot \mathbf{y}_{\circ} \cdot \mathbf{y}_{\circ}
\end{bmatrix}
\begin{bmatrix}
\mathbf{A}_{\circ} \cdot \\
\cdot \mathbf{A}_{\circ} \\
\cdot \mathbf{A}_{\circ}
\end{bmatrix} \mathbf{x}_{\circ}$ = U (x,y) · x = U · (x₀ + A · a) (76) 上式が、異方張力曲面上の要素内部の座標x_oを、節 点距離 a: で表わしたもので、今後第1基本計量を計算 するときの基本となるものである。

異方張力曲面上の位置ベクトルは、 $\mathbf{r} = \mathbf{x}_e \mathbf{e}_x + \mathbf{y}_e \mathbf{e}_y + \mathbf{z}_e \mathbf{e}_z$ (77)で表わされるから、第1基本計量は次式となる。 $\mathbf{g}_{\mathbf{X}\mathbf{X}} = \left(\frac{\partial \mathbf{X}_{\mathbf{e}}}{\partial \mathbf{x}}\right)^2 + \left(\frac{\partial \mathbf{y}_{\mathbf{e}}}{\partial \mathbf{x}}\right)^2 + \left(\frac{\partial \mathbf{Z}_{\mathbf{e}}}{\partial \mathbf{x}}\right)^2$ (78-1) $\mathbf{g}_{\mathbf{y}\mathbf{y}} = \left(\frac{\partial \mathbf{x}_{\mathbf{e}}}{\partial \mathbf{y}}\right)^{2} + \left(\frac{\partial \mathbf{y}_{\mathbf{e}}}{\partial \mathbf{y}}\right)^{2} + \left(\frac{\partial \mathbf{z}_{\mathbf{e}}}{\partial \mathbf{y}}\right)^{2}$ (78 - 2) $\mathbf{g}_{\mathbf{x}\mathbf{y}} = \frac{\partial \mathbf{x}_{\bullet}}{\partial \mathbf{x}} \frac{\partial \mathbf{x}_{\bullet}}{\partial \mathbf{y}} + \frac{\partial \mathbf{y}_{\bullet}}{\partial \mathbf{x}} \frac{\partial \mathbf{y}_{\bullet}}{\partial \mathbf{y}} + \frac{\partial \mathbf{z}_{\bullet}}{\partial \mathbf{x}} \frac{\partial \mathbf{z}_{\bullet}}{\partial \mathbf{y}}$ (78-3) また、 (76) から、 $\left\{\begin{array}{c} \mathbf{X}_{\mathbf{x}} \\ \mathbf{Y}_{\mathbf{x}} \\ \mathbf{Y}_{\mathbf{x}} \end{array}\right\} = \left\{\begin{array}{c} \partial \mathbf{x} \circ \\ \partial \mathbf{y} \circ \\ \partial \mathbf{x} \end{array}\right\} = \left\{\begin{array}{c} \partial \mathbf{U} \\ \partial \mathbf{x} \\ \partial \mathbf{x} \end{array}\right\} = \left\{\begin{array}{c} \partial \mathbf{U} \\ \partial \mathbf{x} \\ \partial \mathbf{x} \end{array}\right\} = \left\{\begin{array}{c} \partial \mathbf{U} \\ \partial \mathbf{x} \\ \partial \mathbf{x} \end{array}\right\}$ $\left\{ \begin{array}{c} \mathbf{X}_{\mathbf{y}} \\ \mathbf{Y}_{\mathbf{y}} \\ \mathbf{Y}_{\mathbf{y}} \end{array} \right\} = \left\{ \begin{array}{c} \partial \mathbf{x} \cdot \mathbf{x} & \partial \mathbf{y} \\ \partial \mathbf{y} \cdot \mathbf{x} & \partial \mathbf{y} \\ \partial \mathbf{y} \cdot \mathbf{x} & \partial \mathbf{y} \end{array} \right\} = \left\{ \begin{array}{c} \partial \mathbf{U} \\ \partial \mathbf{y} \\ \partial \mathbf{y} \end{array} \cdot \mathbf{x}_{\mathbf{y}} = \mathbf{U}_{\mathbf{y}} \mathbf{x}_{\mathbf{y}} \\ (79-2) \end{array} \right\}$ 上式を、 (78-1) ~ (78-3) に代入すると、 $\mathbf{g}_{xx} = \mathbf{t} \mathbf{X}_i \mathbf{t} \mathbf{U}_x \mathbf{U}_x \mathbf{X}_i$ (80-1) $\mathbf{g}_{uu} = {}^{t} \mathbf{\chi}_{i} {}^{t} \mathbf{U}_{u} \mathbf{U}_{u} \mathbf{\chi}_{i}$ (80 - 2) $\mathbf{g}_{\mathbf{x}\mathbf{y}} = {}^{\mathrm{t}} \mathbf{x}_{\mathrm{i}} {}^{\mathrm{t}} \mathbf{U}_{\mathrm{x}} \mathbf{U}_{\mathrm{y}} \mathbf{x}_{\mathrm{i}} {}^{\mathrm{t}}$ (80-3)次に、第1基本計量のベクトル表示を示す。 $g = t \{g_{xx} g_{yy} g_{xy}\}$ (81)更に、gの増分を(80)、(81)から求めると、 dx:を用いて次の様に表わすことができる。 $d \mathbf{u} = \mathbf{V} \cdot \mathbf{k}$ (82) ここに、 (83) V = 次に、(7)で定義されている日の増分を考える。 $dH = d \mathcal{N} g_{xx} g_{yy} - g_{xy}^2$ $= \frac{1}{2H} \left(dg_{xx}g_{yy} + g_{xx}dg_{yy} - 2g_{xy}dg_{xy} \right)$ 0 0 2 $= \frac{1}{2H} \{ dg_{\times\times} dg_{yy} dg_{\times y} \}$ 01 g ×× g yy g ×y 0 (84) $\mathcal{Z} \subset \mathcal{T}, \quad \mathbb{D} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ (85) $\sigma = {}^{t} \{ \sigma_1 \ \sigma_2 \ \sigma_3 \} = \frac{1}{2} \mathbb{D} g$ (86) とすると、(84)は、(85)、(86)及び(82)を用 $v \tau$, $dH = t dg \cdot \sigma$ $=^{t} dx_{i} t V d$ (87)

更に、(74)を用いて、(87)を変形すると、 $dH = {}^{t} da {}^{t} \Lambda^{t} \forall \sigma$ (88) つぎに、要素の変分式を(36)から次のように定義 する。 $\delta \Pi_{e} =$ $\int \frac{\mathbf{y}_2}{\mathbf{y}_1} \int \frac{\mathbf{x}_2}{\mathbf{x}_1} \left[\mathbf{n}_{\mathbf{x}} \left(\frac{\partial \mathbf{H}}{\partial \mathbf{y}_1} \delta \mathbf{X}_{\mathbf{x}} + \frac{\partial \mathbf{H}}{\partial \mathbf{y}_2} \delta \mathbf{Y}_{\mathbf{x}} + \frac{\partial \mathbf{H}}{\partial \mathbf{z}_2} \delta \mathbf{Z}_{\mathbf{x}} \right) \right]$ + $\mathbf{n}_{y}\left(\begin{array}{c} \frac{\partial H}{\partial X_{y}} \delta X_{y} + \frac{\partial H}{\partial Y_{y}} \delta Y_{y} + \frac{\partial H}{\partial Z_{y}} \delta Z_{y} \right) \right) dxdy$ = 0(89) ここで、座標系はデカルト座標で表わした要素座標 系とする。 また **∂H** ∂X× ∂H (X_x) (X_y) $= 1/H (g_{yy} \{ Y_x \} - g_{xy} \{ Y_y \})$ ∂Y× ∂H Zu 27. $= 1/H (g_{uu} U_x \chi_i)$ (90-1)同様に、 H6 ∂X, ∂H = 1/H $(g_{xx} \begin{cases} ny \\ Y_y \\ Z_y \end{cases} - g_{xy} \begin{cases} nx \\ Y_x \\ Z_x \end{cases})$ ∂Y, ∂H 27... = $1/H \left(g_{xx} U_{y} \chi_{i} - g_{xy} U_{x} \chi_{i} \right)$ (90-2) また、(79)より $\left\{ \begin{array}{c} \mathbf{x} \mathbf{x} \\ \mathbf{x} \mathbf{y} \\ \mathbf{x} \\ \mathbf{x$ (91 - 1) $\left\{\begin{array}{c} v X_{\alpha} \\ v Y_{\alpha} \\ v Y_{\alpha} \end{array}\right\} = U_{\alpha} \delta_{\alpha} v \left\{\begin{array}{c} v X_{\alpha} \\ v Y_{\alpha} \\ v Y_{\alpha} \end{array}\right\}$ (91 - 2)となる。 (90) と (91) を (89) の変分式 に代入する と、 $\delta \Pi_{e} = {}^{t} \delta \mathbf{x}_{i} \mathbf{X}_{i}$ $\{n_x^t \mathbf{U}_x \ 1/\mathrm{H}(g_{yy}\mathbf{U}_x\mathbf{x}_i - g_{xy}\mathbf{U}_y\mathbf{x}_i)\}$

+ $n_y^t U_y 1/H(g_{xx} U_y x_i - g_{xy} U_x x_i)$ } dxdy = ${}^t \delta a_i \times$

 $^{t} \mathbb{A} \int \{ \mathbf{n}_{x}^{t} \mathbf{U}_{x} \ 1/\mathbb{H}(\mathbf{g}_{yy} \mathbf{U}_{x} \mathbf{x}_{i} - \mathbf{g}_{xy} \mathbf{U}_{y} \mathbf{x}_{i}) \}$

+ $n_y^t U_y 1/H(g_{xx} U_y x_i - g_{xy} U_x x_i)) dxdy$ = $t \delta a_i x$

- 8 --

 $d\mathbf{f}_{i}^{*} = -^{t} \mathbf{A} \int [\mathbf{n}_{y}^{t} \mathbf{U}_{y} \mathbf{U}_{y} \mathbf{x}_{i} + \mathbf{n}_{x}^{t} \mathbf{U}_{x} \mathbf{U}_{x} \mathbf{x}_{i}]$ - $(\mathbf{n}_{x}^{t} \mathbf{U}_{x} \mathbf{U}_{y} \mathbf{x}_{i} + \mathbf{n}_{y}^{t} \mathbf{U}_{y} \mathbf{U}_{x} \mathbf{x}_{i})] (1/\mathbf{H}\mathbf{g}) dxdy$ (101) $\mathcal{C} \mathbf{a} \mathbf{a}_{x}$

(97) が各ステップの増分方程式、(101) は不釣合 量を表わす。計算は df; が 0 となるまで反復させ る。

4. 数值解析例

4.1 回転戀垂曲面

異方張力曲面の解析例として、回転懸垂曲面をレー リーリッツ法により解析した(図6)。この曲面は、 等張力曲面の場合には解析解が得られている。

仮定関数は、∲₀(z)として等張力曲面の解析解である 双曲関数を、¢;(z)として三角関数を設定した。

a = c cosh(z / c) + a 1 cos(π z / L) (102) ここで、 c はLによって決まる定数である。

図6. 回転懸垂曲面

L/R=1.0の場合の解析結果を表1~2に、図7に断面 図を示した。張力比(nz/n₀)が1.0より大きいと、 等張力曲面と比較して安定解では外側に、不安定解で は内側にはらむことがわかる。図8は、円の高さ L/R を変えたときのくびれ位置 r₈/R の変化の様子を示し たものである。張力比が大きくなるに従って曲面の存 在する限界高さは上昇することがわかる。また、点線 の部分は解が発散した部分である。

参考のために、L/R=1.0,nz/n₀=0.8と1.2の時の有限 要素解を図9に示した。

表1. 数值解析結果 (L/R=1.0、安定解)

	張力比	nz/ne	
Z/R	0.8	1. 0	1. 2
0.50000	1.00000	1.00000	1.00000
0.40000	0.92268	0.94440	0.96132
0.30000	0.86064	0.90194	0.93413
0.20000	0.81518	0.87202	0.91633
0.10000	0.78742	0.85424	0.90633
0.00000	0.77808	0.84834	0.90311

図8.回転懸垂曲面のくびれ位置

表2. 数值解析結果 (L/R=1.0、不安定解)

999 88 99 99 1 - 10	張力比	nz/nθ	
Z/R	0.8	1.0	1. 2
0.50000	1.00000	1.00000	1.00000
0.40000	0.73917	0.66582	0.59321
0.30000	0.59344	0.45393	0.31581
0.20000	0.51744	0.32542	0.13531
0.10000	0.48241	0.25669	0.03320
0.00000	0.47244	0.23510	0.00011
		S	14

図9.2 有限要素法による異方張力曲面 (L/R=1.0,n=1.2)

4.2 HP曲面

図10に示した境界条件をもつHP曲面は次式で表 される。

Z(x,y)=2h(x/a)(y/b) (103) 初期曲面は上式を用いた。ここでa=bとする。要素分 割数はx,y方向共に10分割である。異方張力はx 軸に対して45°と135°の方向に作用させ、張力 比nはn=nb/nbとする。ここでnb,nbはそれぞれ、45°方向の張力と135°方向の張力である。 解析した高さはh/a=1.0、n=0.5,1.0,2.0である。図 11と12にそれぞれパースと断面図を示した。張力 比が高々2割程度の変化によって曲面形状は大きく異 なることがわかる。このことから、設計者が希望する 曲面のサグは張力比を多少変えることによって簡単に 得られることがわかる。

図10 HP曲面の境界条件

図11.1 異方張力曲面のパース(HP曲面) (a=b=h,n=0.5)

図11.2 異方張力曲面のパース(HP曲面) (a=b=h,n=2.0)

図12 異方張力曲面の断面図(HP曲面)

5. まとめ

異方張力曲面形状を求めるための数値解析手法につ いて検討した。本手法は異方張力曲面の基礎式として、 曲面の微小部分における力の釣合いから求めた微分方 程式とその変分式を用いている。曲面を決定するため の解は、初期曲面から任意の方向に設定された方向余 弦方向の距離として表現される。そして数値計算法と してレーリーリッツ法と有限要素法を適用し、軸対称 曲面とHP曲面を解析することにより、異方張力曲面 の性状を把握すると共に本解析法の妥当性を確認した。

参考文献

- [1] Otto,F.,Tensile Structures : Volume 2, M.I.T. Press,1969,pp.112
- [2] 石井一夫、安宅信行、建築膜構造の設計、工業調 査会、1969, pp72
- [3] 鈴木俊男、半谷裕彦、等張力曲面形状の数値解析、 膜構造研究論文集 '89,pp1~pp12

NUMERICAL ANALYSIS OF DIFFERENTLY STRESSED SURFACE

Toshio SUZUKI^{.1} Yasuhiko HANGAI^{.2}

The paper presents an numerical analysis of surfaces stressed by diffrent tentions in the two direction for membrane structure. The basic differential equations with three unknown coordinate functions are derived from the equilibrium condition of infinitesimal element. The variational equation for surface stressed by different tentions in the two direction are defined by using these equations. The solution of the present differential equations is formulated to be the solution having one unknown variable which denotes the length in the given direction from the initial surface to the unknown surface to be determinated. We used Rayleigh-Ritz method and finite element method to the numerical analysis, and the surface of catenoid and hyperbolic paraboloid are numerically analyzed.

*1. Chief Research Engineer, Technical Research Institute, Fujita Corporation*2. Proffessor, Institute of Industrial Science, University of Tokyo

「原用され」 陸距端の使用する 13

湖10 百日由田の城林奏作

支援導 前[11]

[1] J. T. Press, 1288, pp. 1

- [2] モチーム: 支払付付 加減期償却の図れ、上資用 飲食、1005.502
- (1) 前本贸易、工作期金、学校力由重用区の数量繁化 精構造研究的文集「現1991-2012