傷を有する膜材料の引張強度に関する数値解析

西川 薫 *1 渡辺 典之*2

膜材に傷が生じた場合の強度特性について、従来主に実験によって検討されてきた。本研究では 膜材を織物特性を考慮した数値モデルに置換し、数値実験により、傷を有する膜材の応力集中特性 を捉えようとするものである。モデル化において3つのモデルを比較し、織物としての膜材に傷が 生じた時の応力集中の状況を把握し、この方法により、より実状に近い応力集中評価が可能である ことを述べる。

1. 研究目的

膜構造建築物には膜材として樹脂をコーティングし た織布が一般に用いられている。この膜材料には、構 造的な安定性を確保するため、初期張力が導入され、 さらに風、雪などの外力により、大きな引張応力を生 じる。このような応力下(一般に二軸状態となる)で、 何らかの理由で膜材に傷が生じると、これが伝播、拡 大して、構造物の安全に重大な影響を及ぼすことがあ る。

傷を有する膜材料に関する応力集中問題については、 過去に実験等により検討されているが、二軸応力を受 けるコーティング織物として考慮した場合、必ずしも 汎用なものとは言えない。そこで膜材料を、コーティ ング織物としての織物特性を考慮に入れた数値モデル 化し、数値解析により応力集中シュミレーションを行 うとともに、数値解析による応力評価の可能性を検討 する。

2. 膜材料の機械特性とモデル化

2.1 膜材料の構成

汎用されている膜材料は、織布の表裏面を樹脂コー ティングした柔軟な繊維強化複合材料である。織布を 構成する繊維として、現在一般に用いられているのは

*1 大成建設暢技術開発部, 横浜国立大学工学部博士課程

ガラス繊維であるが、他にポリエステル系合成繊維、 ポリビニルアルコール系合成繊維、ポリアミド系合成 繊維などがある。又、コーティング材料としては、ポ リ塩化ビニル、クロロプレンゴム、クロルスルホン化 ポリエチレンゴム、四ふっ化エチレン樹脂等が用いら れている。

織布の織り方には、平織、斜文織、朱子織の3種類 があるが、平織が最もよく用いられている。この平織 は、3種類の織布の中で最も簡単なもので、表裏とも 同じ面構成を持つ。(図2.1.1)

コーティング層の厚さは、使用される用途や要求さ れる耐久性の程度によって異なるが、一般には織布と 同程度の重量になっている。又、コーティング層の表 裏配分比は、一般に50:50から70:30であり、構造用 としては表面の方がわずかに厚いものが使用されてい る。(図2.1.2)

*2 横浜国立大学工学部修士課程

図2.1.2 コーティング織布の構成 さらに、織糸に対する打ち込み本数は1 inch (25mm) 巾につき10~40本が一般的である。又、織糸の断面は 円形、楕円形などがあり、太さは0.2~1.0mm程度であ る。

2.2 膜材料の機械特性

樹脂コーティング織布の応力・ひずみ曲線は、(図2. 2.1)に示すように、直線性がなく、非線形性を示して いる。

これは、繊維とコーティング材の挙動から3つの領 域に分けられる。(図2.2.2) すなわち、第一領域は、 繊維とコーティング材が一体となって挙動し、コーテ ィング材の剛性によりひずみが決定される領域である。 第二領域はコーティング材と繊維との間にすべりが生 じ、糸のクリンプ安定状態に移向する領域。第三領域 は、糸がクリンプ安定状態となり糸の弾性伸びがひず みを決定する領域である。

図2.2.2 応力-ひずみ曲線の模式図

次に, 膜材として汎用されているフッ素樹脂コーティングガラス繊維布の織糸引張試験及び2軸引張試験 の結果の1例を紹介する。

> フッ素樹脂コーティングガラス繊維布 構成 繊布 βヤーンガラス繊維布 平 繊 打ち込み本数 縦 25本/25mm巾 債 19本/25mm巾 コーティング材 四ふっ化エチレン樹脂
> 厚み 0.8±0.1mm 重量 1.3±0.13kg/ml

1) 糸の引張試験

サンプリングした糸は原反をコーティング液に浸し、 縦糸方向にテンションを加えた状態で 350℃,10分間 加熱の工程を1回実施し、織物の状態を固定した後、 糸をほぐしたものを用いた。これは、ガラス糸へのコ ーティング材浸透による影響を考慮してのことである。

表2.2.1 βヤーン単糸の線径 (n=20)

Q		3
	— A —	(mm)
	タテ糸	ヨコ糸
A	0.95 ± 0.065	1.13±0.076
В	0.42±0.036	0.3±0.048

試験の結果, 図2.2.3 に示すように荷重-ひずみ 曲線は直線的で,荷重24kgで糸は破断し,その時 伸び率は4.08%である。これより糸一本の剛性 (ヤング率E×断面積A)は 588kgとなった。

2) 膜材の二軸引張試験

各種荷重下での二軸引張試験(図2.2.1は1例) から、応力一ひずみ曲線を線型化し、直交異方性 弾性体と仮定して、各方向の材料常数を算出する と次のようになる。

縦方向 Ext=1,030 kg/cm vxy=0.57

横方向 Eyt = 900 kg/cm vyx=0.66

しかし,線型化の困難さ及び織布としての構造 組織からして,直交異方性弾性体として仮定する のは必ずしも適正とは言えないが,織布構造とし ての機械特性の1例としてここに挙げる。

2.3 膜材料のモデル化

傷を有する膜材料の応力変形解析を行うため、織布 をタテ糸、ココ糸方向それぞれの繊糸による格子状正 方形モデルに置換した。織布に対する荷重状態はタテ 糸、ヨコ糸方向2軸とし、それぞれ線対称であること から、1/4を取り出して解析を行った。また、モデル は、繊糸のクリンプ、コーティング等の影響を考慮し て、比較検討のため、次に述べるような3種類を作成 した。 各モデル化においてはタテ,ヨコ方向の糸の打込み本 数を18本/inch(糸間隔1.39mm),両糸のクリンプ時の中 心間距離0.25mmとし、タテ糸、ヨコ糸の本数は各5本 (全体モデルでは10本)とした。

1) モデルA

モデルAは織布を単純な平面格子としたもので, 次のモデルBとの比較から,糸のクリンプによる応 力,変形への影響を調べる目的で作成された。

図2.3.1 モデルAアイソメ図 (1/4モデル)

2) モデルB

モデルBは織布のみを取り出して,糸のクリンプ を考慮し,タテ糸、ヨコ糸交点間につなぎ材を入れ, 各糸を蛇行させたモデルであり,モデルAとは糸の クリンプの影響を,次に説明するモデルCとはコー ティングの影響を調べる目的で作成された。モデル 化において交点つなぎ材部分の不安定性を解消する ため,交点部分を図2.3.3に示すような四面体に形 成した。

図2.3.2 モデルB平断面図 (1/4モデル)

図2.3.3 モデルB糸交点部

3) モデルC

モデルCは繊糸のクリンプとコーティング材の影 響を考慮したモデルである。タテ,ヨコ方向の繊糸 の交点はモデルB同様につなぎ材を入れ,各糸を蛇 行させた上に交点の上下面に三角形要素によるコー ティング材を付加した。但し,本モデルの場合はモ デル上下面が三角形要素によりつながれており,交 点部の不安定性はないため,つなぎ材は単材とした。

図2.3.4 コーティング織布交点部の模式図

図2.3.5 モデルCのモデル化

- 3. 各種モデルによる数値解析
- 3.1 解析手法

解析は有限要素法により,形態非線形問題として, ニュートン・ラプソン法を適用して解を得た。 傷の発生(糸切れ)による応力集中を調べるため, モデルに対し,X,Y二方向に荷重を加えた状態で, 糸切れ部分の拘束を解除し,応力変形を求めた。

図3.1.1 解析モデルの荷重及び境界条件

解析においては、比較検討のため、次のパラメータ を変えて数値実験を行った。(表3.1参照)

截糸要素剛性 EA(kg)	100.0	588.0	1000.0	5000.0	
フーチィング要素剛性 Et(kg/mm) G (kg/mm) V	10.0 3.85 0.3	5.0 1.925 0.3			- 10
有重比 X方向荷重 (kg/mm) Y方向荷重 (kg/本)	6.0 6.0	6.0 12.0	12.0 6.0	3.0 3.0	9.0 9.0
糸切れ本数 (本)	0	1	2	3	001

表中 □は基本条件とし、全モデルについて実施している

3.2 名モデルの荷重・ひずみ関係

各モデルについて、無傷の状態での荷重-変位関係 を調べるため、X:Y荷重比、1:1の2軸引張状態 で解析を行ない比較した。

解析の結果,各モデルの荷重・ひずみ関係は,直線 性を示している。また,モデルAは,糸剛性がそのま ま膜材料剛性として表れているのに対し,モデルBは, 若干低い値を示している。モデルCはモデルBに対し, コーティング材の剛性の分だけ若干髙くなっているが, 3モデルとも剛性に大きな違いはない。 3.3 解折結果

3.3.1 モデルA

このモデルでは他のモデルに比べ,応力の集中が切 断糸のごく近傍に限られ,切断部端の糸要素の応力集 中率(切断後の応力/切断前の応力)は1.8(1本切断 時)~3.8(3本切断時)と大きな値を示している。

切断部端の糸要素の応力集中率は糸剛性が高いほど 大きくなり、又、応力集中の範囲は糸剛性が低いほど 広くなる傾向を示す。(図3.3.4.1)

糸破断による切断部分のX方向変形量は糸剛性が低いほど大きく、応力伝達に寄与するY方向糸のX方向 余弦量も大きくなり、このため分布が広範図となり、 破断部端の応力集中率も小さくなると考えられる。(図 3.3.4.2)

図3.3.A.2 Y方向糸変形による応力伝達

X, Y方向荷重比による応力集中への影響は顕著に 見られなかった(図3.3.4.3)。又,荷重の大きさに よる影響は,荷重が大きくなると若干少なくなる傾向 を示している。(図3.3.4.4)

又,糸切り本数が多いほど破断部端の糸要素の応力 集中率は大きくなり,1本で1.93,2本で2.86,3本 で3.79となりその増加傾向はほぼ線型である。

図3.3.A.3 モデルA荷重比と応力集中率

図3.3.A.4 モデルA荷重の大きさと応力集中率 (荷重比 1:1)

表3.3.4-a モデルAの糸破断時(1本)のX方向変位量 変形は図3.3.4.2 における。印のY方向糸の変形量をとった

糸剛性	(破断部)	2	3	4	5	
5000kg	0.279	0.001	0.0	0.0	0.0	
1000	0.303	0.004	0.0	0.0	0.0	
588	0.313	0.007	0.0	0.0	0.0	
100	0.500	0.033	0.006	0.002	0.001	
Same	Martin Street	1.		〈単伝	Σ:mm>	

3.3.2 モデルB

モデルBは、モデルAに比べ糸破断による応力集中 の影響範囲は若干広くなっており、糸破断部端の糸要 素の応力集中率は 1.6~3.5 とモデルAよりやや小さ な値となっている。 糸剛性による応力集中率への影 響は剛性が高いほど大きくなる傾向があるが、モデル Aほど顕著でなく、かつ値は小さい。

糸破断による切断部の変形量はモデルAに比べ大き いが、糸剛性による顕著な差異は見られない。

図3.3.B.1 モデルB糸剛性と応力集中率

X, Y方向荷重比による応力集中への影響は顕著に あり、Y/X 荷重比の大きいほうが破断部端の応力集中率 が低く,かつ分布が広範囲となっている。これにより 応力集中に対し,破断糸方向と直角方向の糸張力が影 響を及ぼすことがわかる。(図3.3.B.2)

しかし、荷重の大きさによる応力集中率への影響は ほとんど見られない。(図3.3.B.3)

又,糸切れ本数による応力集中率は,端部糸要素に

-52-

おいて, 1本で1.74, 2本で2.61, 3本で3.53となり モデルAと同様にほぼ直線的に変化しているが, 値は 小さくなっている。

図3.3.B.3 モデルB荷重の大きさと応力集中率

表3.3.B-a モデルBの糸破断時(1本)のX方向変位量

糸剛性	(破断部)	2	3	4	-5
5000kg	0.402	0.062 0.0	0.012	0.003	0.001
1000	0.413	0.066	0.013	0.003	0.001
588	0.422	0.069	0.014	0.004	0.001
100	0.518	0.123	0.023	0.007	0.003

〈単位:mm〉

3.3.3 モデルC

モデルCはコーティング材の影響を考慮したモデル であるが、前記2つのモデルに比べ、破断部端糸要素 の応力集中率は1.35~2.7とかなり小さな値を示して いる。糸剛性の応力集中への影響はモデルB同様ほと んど見られず、応力比についてはY方向荷重比の大き なほうが集中率が小さく、範囲は広くなり、荷重の大 きさによる影響はあまり受けていないなど これらに ついてもモデルB同様の傾向を示している。

しかし, どの場合もモデルB に比べ応力集中率の値 は小さくなっている。これはコーティング材の応力伝 達により, 応力が分散されたた めと考えられる。

表3.3.C-a モデルCの糸破断時(1本)のX方向変位量

糸剛性	(破断部)	2	3	4	5	
5000kg	0.188	0.041	0.007	0.003	0.002	
1000	0.195	0.045	0.001	0.007	0.007	
588	0.202	0.048	0.014	0.011	0.011	
100	0.254	0.078	0.042	0.039	0.046	
			2	(畄ん	(

コーティング剛性による比較は、Bt=10kg/mm, $\nu = 0.3 \& Et=5kg/mm$, $\nu = 0.3 の二種で実施したが、剛性$ の高い方が破断部端糸要素の応力集中率が大きいとの結果を得た。これは、破断部の変形がコーティング材により拘束され、このため Y 方向糸の方向余弦が小さくなり、応力分散への寄与が少なかったためと考えられる。

4. 傷(糸切れ)による応力集中

4.1 コーティング織布モデルの応力集中特性

各モデルについて,種々のパラメーターにより数値 実験した結果,大きく次のような事が言える。

- i)モデルAとモデルBの結果から、織布の破断糸に対し、垂直方向の糸の張力の応力集中への影響は、 モデルAのような平面格子モデルでは適切に表現 しにくい。
- ii) モデルBとモデルCの比較から、コーティング材 の存在により応力が分散され、最大応力集中率は 小さくなる。

図4.1.1 各モデルの応力集中率の比較

次に種々のパラメータによる応力集中への影響 を整理する。

1) 糸剛性

モデルB, Cのような織布モデルにおいては糸 剛性の違いによる応力集中率への影響は小さい。

2) 荷重比及び荷重の大きさ

破断糸方向に垂直方向の糸の張力が応力集中率 に影響を及ぼし、この張力が大きいほど応力は分散 され、応力集中率(最大値) は小さくなる。

又,荷重が大きくなると応力集中率は若干小さく なる傾向はあるが,あまり大きな影響を受けてい ない。

3) 糸破断本数

本数が増加するに従がい, 応力集中率はほぼ線 型に大きくなる。

4) コーティング剛性

コーティング材により,糸要素の応力集中率は 小さくなる傾向を示すが、コーティング剛性が高 いと応力集中率が高くなる場合があり、コーティ ング剛性と応力集中の関係はその剛性によりかわ る。

4.2 大型モデルによる解析

5×5織糸モデルによる数値実験において、糸破断 時、特に本数が増加した場合顕著に、外縁の糸要素に も破断による応力集中の影響が認められるため、モデ ルを大きくして数値解折を行った。

大型モデル(11×11織糸モデル)では、糸切れ本数 5本まで計算したが外縁糸要素に応力集中の影響は認 められず、このモデルにおける本来の値が求められて いるものと考えられる。

図4.2.1 中, 5×5モデルの結果を点線で示したが, 1本切断時で8%, 2本で13%,3本で17%程度の違いが生じており,精度の高い値で出すためには適正な 大きさのモデルが必要なことがわかる。

図5.1 大型モデルによる解析結果 (応力変形図)

5. 結論及び今後の課題

以上から、コーティング織布数値モデルにより、傷 のある膜材の応力集中評価が可能であることが判明し たが、実用上、実物実験との比較とともに数値モデル 化における、各種データの定量化を今後進めることが 必要である。その主たるものを次に挙げる。

1) 織糸の剛性

- 2) コーティング材の剛性
- 3)タテ糸ヨコ糸の中心間距離(つなぎ材長さ)とその間の繊維と直角方向の剛性(圧縮による)。 など。

又、本研究では糸切れによる傷の大きさが最大10数 ■ 程度のものまでの数値解析であるが、傷がこれ以上 に大きい場合はさらに大きなモデル化が必要である。 しかし、今後前記のことが解決されれば、本研究の数 値解 折による応力集中評価は、対象物の初期応力状態、 境界条件を自由に選択でき、実際の複雑な状況に適合 した評価が可能となり、汎用性のあるものであると考 えられる。

(参考文献)

「織物の幾何学的構造」
基礎繊維工学Ⅲ 田中道一

基礎職種工子皿 田中進

2) 「種々の欠陥を有するコーティング織物の1 軸及び2軸引張強度に関する実験的研究」 南宏和、本林信哉

日本複合材料学会誌 Vol.7 No.3

- 3) FSTRESS CONCENTRATIONS FOR FABRIC MEMB-RANE STRUCTURES J, Kazuo Ishii , IASS. -86
- 4) 「Mechanische Eigenschaften PVC-beschichteter Polyestergewebe 」, Meffert, B , Diss. Rheinisch-Westfälische Technische Hochschule Aachen, 1978

表3.3.C-b	モデルC糸破断時	(1	本)	のX方向変位量
				〈単位:mm〉

コーティング	(破断部)	2	3	4	5
Et= 10 kg	0.202	0.048	0.014	0.011	0.011
5	0.315	0.120	0.056	0.036	0.030

図4.3 モデルB変形図