テンション構造物の材料非線形及び 幾何学的非線形解析

黑川泰嗣*1 石井一夫*2

E

本論文では、ケーブルネット構造についての材料非線形問題を取り上げ、応力-ひずみ関係式 を非線形式とし、幾何学的非線形と材料非線形を組み合わせた解析を報告する。この解析結果に よると、幾何学的非線形のみの解析と比較して、外力の低い時も高い時も共に変位あるいは張力 に相違が表われ、信頼できる解析となる。

1.序

ケーブルネット構造、膜構造等では、構造物の剛性 が低いため、外力による変形量が大きい。そのため正 確な変位あるいは張力を求めるには、有限要素法を用 いた非線形解析が必要となる。

従来の研究では、幾何学的非線形を考慮した解析が 主に行われており、もう一方の非線形要因である材料 非線形性は十分に検討されていない。本研究では、ケ ーブルネット構造の材料非線形性を取り上げ、幾何学 的非線形性との定式化、部材の応カーひずみ関係の非 線形式を組み立て、静的な外力による弾性範囲での変 形性状の把握を目的とした。

2. 材料非線形及び幾何学的非線形の定式化

変位法によって定式化された小さなひずみの線形弾 性問題では、次のように組み立てて得られた剛性方程 式

[K] {δ} - {R} = 0 (2.1)
 を解き、最終の解に到達するのが普通である。ここに
 (R) は、外力、初期応力、初期ひずみなどによるす
 べての力を並べたベクトルを表わす。

上の定式化では、線形のひずみ – 変位関係式、変位 の連続性、近似的に力のつり合いを満足するという条 件のほか、つぎの線形弾性構成方程式が成立すること が仮定されている。

 $\{\sigma\} = [D](\{\varepsilon\} - \{\varepsilon_o\}) + \{\sigma_o\}(2.2)$ 材料非線形弾性問題を考える上で、変位の連続性及び 力のつり合いは依然として満足されなければならない ので、変更を要する関係は式(2.2)のみである。新 しい関係は一般に

 $F (\{\sigma\}, \{\varepsilon\}) = O \qquad (2.3)$

の形で表わされる。式(2.2)に含まれるパラメータ [D]、{ ε 。}、{ σ 。}の一つ、またはそれ以上 を調節して、その結果、式(2.2)と式(2.3)とが式 (2.1)の解として同じ応力およびひずみ値を与えるよ うにすることができれば材料非線形問題の解が得られ ることになる。

ひずみ - 変位関係式が線形であるということは、構 造内に生じる変位もひずみも小さいということに相当 する。外力が加わっても構造要素の幾何学的性状は基 本的に変化することなく、1次の微小な線形ひずみの 仮定を用い得ることに相当している。

*1 鹿島建設(株)建築設計本部 構造設計部 *2 横浜国立大学 工学部 建築学科教授

生じるびずみが小であって通常の構造材料の弾性限 度を超えていなくてもこのような仮定が成立しなくな ることがある。ケーブルネット構造はこの種の構造で あり、幾何学的非線形が必要となる。

内および外力のつり合い条件は変位(またはひずみ) の大小に関係なく満たされていなくてはならない。

従って、 {δ} によって変位が与えられるとき {ψ({δ})} = {v [B] [†] {σ} d V - {R} =0

(2.4) が成立しなければならない。(ψ)は外部および内部 一般化力の総和を表わし、 [B] はひずみの定義から つぎのように導かれるものである。

 $d \{ \epsilon \} = [\overline{B}] d \{ \delta \}$ (2.5)

ここで [B] と表わしてあるのは、変位が大きい場合ひずみが変位に対して非線形関係で結ばれ、[B] が (δ)の関数となるからであり、

[B] = [B₀] + [Bι ({δ})] (2.6) と表わし、[B₀] は線形微小変位解析におけるもの と同一のマトリックスである。ひずみが十分小さいと きは一般的な弾性関係として通常のように式(2.2) を 用いることができる。しかし、解の全過程は常に式 (2.4) の非線形方程式の解を得ることに帰着するので あるから、どのような非線形の応力-ひずみ関係を用 いても良い。

3. ケーブルネット	構造の剛性方程式
------------	----------

応力とひずみの関係式を次のように仮定した時 $\sigma = F(\varepsilon)$ (3.1) 曲げモーメント等を含まないケーブルネット構造物 ではその応力は張力のみであるので、ひずみエキルギ ーは次のように表わせる。 $\Phi(\varepsilon) = \oint F(\varepsilon) d\varepsilon$ (3.2) 全ひずみエキルギーは $U = \oint \oint \Phi(\varepsilon) dxdydz$ (3.3) であり、この全ひずみエキルギーは変位の変化がひず

そのり、この主いすみエキルギーは変位の変化かいす みのみに影響しているので、変位の関数と考えること ができる。全ひずみエキルギーUをある点の変位uiで 微分したものは、その点の変位方向への外力fiに等し い。というのが最小ひずみエキルギーの原理であるの で、次式が成立することになる。

$$\frac{\partial U}{\partial u_i} = f i \qquad (3.4)$$

式(3.3)についてuiで偏微分するならば、次の事が いえる。

$$\begin{aligned} \frac{\partial U}{\partial u_{i}} &= \frac{\partial}{\partial u_{i}} \qquad \left[\int_{V} \Phi(\varepsilon) dv \right] \\ &= \frac{\partial}{\partial u_{i}} \Phi(\varepsilon) \int_{V} dv \\ &= \frac{\partial}{\partial \varepsilon} \left[\Phi(\varepsilon) \right] \cdot \frac{\partial \varepsilon}{\partial u_{i}} \cdot A \cdot L_{0} \\ &= F(\varepsilon) \cdot A \cdot L_{0} \cdot \frac{\partial \varepsilon}{\partial u_{i}} \\ (3.5) \\ O^{\#} \mathcal{A} \varepsilon t_{\lambda} & \text{(xostrested as or states as a states$$

 $f_{zi} = -Nij$ $\frac{zji + wji}{L}$ $f_{zj} = Nij$ $\frac{zji + wji}{L}$ 従って構造の節点の釣合方程式をたてるには f の符号 をかえたものすなわち-fを外力と同様に考えて取り 扱えばよいので {P_x} = {-f_x} = N $\frac{xji + uji}{L}$ (3.10) が釣合方程式となる。

4. ケーブル材料の応力ひずみ関係

ケーブル材料の荷重・伸長曲線を図1.に示す。(文 献6)このようにケーブル材の応力-ひずみ関係は、 応力が小さい状態では締結性を示し、破断近くの応力 ではひずみが急に増加する。

図-1. ケーブル材料の荷重・伸長曲線

従って、材料非線形を考慮した新しいモデル式も、 このS-S曲線に沿ったものでなければならない。

単軸材の応力-ひずみ関係式は、材料線形の場合次 の式で表せる。

 $\sigma = \mathbf{E} \cdot \mathbf{\epsilon} \tag{4.1}$

 σ :応力kg/cni、E:引張彈性率kg/cni、 ε :ひずみ 引張彈性率Eは定数であり、比例関係となる。線形式 の場合は以上のように簡単な数式で表現できるが、材 料非線形を考える場合、応力 σ とひずみとの関係を数 式にすることから始めなくてはならない。

ここに、文献(2)による非線形のモデル式がある

$$\sigma = \frac{1}{\left\{1 + \left(\frac{E}{\sigma_{y}} \epsilon\right)^{n}\right\}^{1 \ge n}} \qquad (4.2)$$

E・ε

E:引張弾性率kg/cml、 σ ,:破断応力kg/cml また、上式における徴係数 $\frac{d \sigma}{d \epsilon}$ は次の様になる。

$$\frac{d \sigma}{d \varepsilon} = \frac{E}{\left\{1 + \left(\frac{E}{\sigma_{x}}\varepsilon\right)^{n}\right\}^{\frac{n+1}{n}}} (4.3)$$

式(4.2)について圧縮域まで評価すると図-2のグ ラフとなる。

図-2. 式(4.2)よるS-S曲線

しかしながら実際のケーブルの引張試験では、上図 の挙動は示さず、初期ひずみでは応力が小さく、ひず みが増すにつれて応力は増加し、破断近くになると応 力の増加は小さくなる。また特性定数は材料によって 異なるが、およそ以下の数値である。

E _s	(標準的な弾性率)	:	1, 400, 000	kg∕cn¹
E 。	(初期の弾性率)	:	450,000	kg∕cm²
σγ	(破断強度)	:	7,000	kg∕cn1
n	(曲がり具合)	:	4~6	

従って、モデルのS-S曲線式を修正して実際の挙 動に乗るようにしなければならない。式(4.2)のx 軸 y 軸を各々について軸移動させ新しいS-S曲線式 を求める。

式 (4.2) において $\frac{d \sigma}{d \varepsilon}$ = E 。となる p 及び Q を求めて ϕ 及び Y の 増加率 a, b を求める。

$$P = \frac{\sigma_y}{E_s} \left\{ \left(\frac{E_s}{E_o} \right)^{\frac{n}{n+1}} - 1 \right\}^{\frac{1}{n}}$$
$$Q = \frac{E_s \cdot p}{\left\{ 1 + \left(\frac{E_s}{\sigma_y} \right)^{\frac{n}{n}} \right\}^{\frac{1}{n}}}$$
$$a = \left(k + p \right) \swarrow k \qquad b = \left(\sigma_y + Q \right) \swarrow \sigma_y$$

従って、次式 (4.4)を得る。
b Ψ - Q =
$$\frac{E_s \cdot (a \cdot \phi - p)}{[1 + \{\frac{E_s}{\sigma_y} (a \cdot \phi - p)\}^n]^{\frac{1}{n}}}$$
(4.4)

Ψ、φを新しくσ、εに置き換える。

$$Q = \frac{E_{s} \cdot (a \epsilon - p)}{b \left[1 + \left\{\frac{E_{s}}{\sigma_{y}} (a \cdot \epsilon - p)\right\}^{n}\right]} + \frac{Q}{\frac{1}{n}b}$$
(4.5)

以上のように、初期弾性率 E o 、標準弾性率 E s 、及 び破断応力 σ y 、破断時ひずみ k を与えることにより、 新しい応力 – ひずみ関係非線形式(4.5)が求まる。

図-3. S-S曲線の修正

この曲線式(4.5)の検討として、Esを定め、 E。による違いを図4に示す。

5. 非線形方程式の解析手法

式(4.5)の応力-ひずみ関係式を用いて幾何学的 非線形と組み合わせた釣合式はi点でのx方向に注目 すると

$$A_{x} = \Sigma E_{(L)} \left[A \left(\frac{1}{C} - \frac{1}{L} \right) (x + u) + \frac{(x + u)}{E_{(C)} C} N^{\circ} \right] + P_{IX}$$

= $\Sigma E_{(L)} \phi_{(u)} + P = O$ (5.1)

A:断面積、N°:初期張力、C:初期張力時の部材長

L:変形後の部材長、P:外力

E (L) 、E (C) は次式 (5.2) で求まる。

$$E_{(L)} = \left(\frac{a}{b} E_{s} - \frac{E_{s} \cdot p}{b \cdot \epsilon}\right)$$

$$= \frac{\left[1 + \left(\frac{E_{s}}{\sigma_{y}} (a \cdot \epsilon - p)^{n}\right)^{\frac{1}{n}} + \frac{Q}{b \cdot \epsilon}\right]}{(5.2)}$$

$$\epsilon = \frac{L - C^{0}}{(1, b^{s} C O B; E_{s}(c), b^{s} R E_{s} c)}$$

従って、幾何学非線形と材料非線形を考慮した式 (5.1)は、非線形式となるので、収れん計算が必要 となる。釣合式(5.1)を(♂)について微分をとる と

 d A = d E (δ) ・ φ (δ) + E (δ) ・ d φ (δ) (5.3)
 となり、前項を材料非線形項、後項を幾何学的非線
 形項と考えることができる。Newton Raphson法を採用
 したマトリックスは

$$K = \begin{bmatrix} \frac{\partial E_{(L)}}{\partial u_{i}} \cdot \phi_{(u)} & \frac{\partial E_{(L)}}{\partial v_{i}} \cdot \phi_{(u)} & \frac{\partial E_{(L)}}{\partial w_{i}} \cdot \phi_{(u)} \\ \frac{\partial E_{(L)}}{\partial u_{i}} \cdot \phi_{(v)} & \frac{\partial E_{(L)}}{\partial v_{i}} \cdot \phi_{(v)} & \frac{\partial E_{(L)}}{\partial w_{i}} \cdot \phi_{(v)} \\ \frac{\partial E_{(L)}}{\partial u_{i}} \cdot \phi_{(w)} & \frac{\partial E_{(L)}}{\partial v_{i}} \cdot \phi_{(w)} & \frac{\partial E_{(L)}}{\partial w_{i}} \cdot \phi_{(w)} \\ \frac{\partial E_{(L)}}{\partial u_{i}} \cdot \phi_{(w)} & \frac{\partial E_{(L)}}{\partial v_{i}} \cdot \phi_{(w)} & \frac{\partial E_{(L)}}{\partial w_{i}} \cdot \phi_{(w)} \\ \frac{E_{(L)}}{\partial u_{i}} \cdot \frac{\partial \phi_{(w)}}{\partial u_{i}} & E_{(L)} \cdot \frac{\partial \phi_{(w)}}{\partial v_{i}} & E_{(L)} \cdot \frac{\partial \phi_{(w)}}{\partial w_{i}} \\ \frac{E_{(L)}}{\partial u_{i}} \cdot \frac{\partial \phi_{(w)}}{\partial u_{i}} & E_{(L)} \cdot \frac{\partial \phi_{(w)}}{\partial v_{i}} & E_{(L)} \cdot \frac{\partial \phi_{(w)}}{\partial w_{i}} \\ \frac{E_{(L)}}{\partial u_{i}} \cdot \frac{\partial \phi_{(w)}}{\partial u_{i}} & E_{(L)} \cdot \frac{\partial \phi_{(w)}}{\partial v_{i}} & E_{(L)} \cdot \frac{\partial \phi_{(w)}}{\partial w_{i}} \\ = [K_{*}] + [K_{*}] & (5.4) \end{bmatrix}$$

-42-

5	な	0	•																				
	Ę	K	m	+	K	e]	{	Δ	δ	}	+	{	φ	}	=	0						
を	解	5	た	{	Δ	δ	}	を	収	n	h	さ	せ	3	2	F	に	よ	2	2	5.	うを)得
3	č	Ł	が	T	ㅎ	3	o	ま	た	•	式	(5.	3)	0	材	料	非	線	形	項	は
式	(5.	2)	を	微	分	す	る	z	Ł	で	求	ま	り	`	次	0	様	に	な	る	0
		.,					d	E	(L)			d	ε						d	ε		
D	E	(0)	=		d	ε			•	-	d	δ		=	Φ	•		d	δ		
	d	E	(L)									Е	s	•	р							
	d	8			-		b	•	ε	2	C	1	+	{	E o	s y	(a	-	р)	}	1	l h
					a	•	Е	s	C	E	S y	(a	ε	-	р)	}						
			-		b		ε		[1	+	{	E o	S y	(a	ε	K	p)	}]	<u>n +</u>	1
			-	-	b	6	2	-															
従	-	T			U	0																	
9	E					хi	1	+	u i	i			Э	E				хi	i	+	цi	i	
9	ui	-	_	Φ	-		C	0	L	-			9	ui		Φ	-		c	0	L.	-	
9	E					уj	i	+	vj	i			9	E				уj	i	+	vj	i	
a	vi	200	-	Φ	-	-	C	0	T		-		a	vi	=	Φ	-	-	C	0	T	-	

 $\frac{\partial E}{\partial wi} = -\Phi \frac{zji + wji}{C^{\circ} L} \quad \frac{\partial E}{\partial wj} = \Phi \frac{zji + wji}{C^{\circ} L}$ となる。式 (5.3) の幾何学的非線形項は、従来の幾

何学的非線形の解析時に求めてあり、その弾性率Eが、 部材のひずみにより、遂次変化すればよい。

6. 解析例および考察

(a) トラスモデル

右図のモデルについて 節点1に荷重Pを作用さ せ、材料線形・幾何学的 非線形解析と材料非線形 ・幾何学的非線形解析の 比較を行った。ケーブル 材のモデルとして図5

を示す。これは、破断時 (a) トラスモデル ひずみが、かなり大きな値をとり、破断近くの荷重で は、変位量が大きくなると考えられる。材料線形のモ デルとして、非線形モデルの標準弾性率と初期弾性率 の中間をとり、E = 720,000 kg/cm を用いた。

図 6 にその解析結果についての節点1の荷重と変 位の関係のグラフを示す。また、表 6.1 に荷重と変位 及び応力の関係を示す。

図-5 ケーブルのS-S曲線

表 6.1 解析結果

荷重 (kg)	節点1の	変 位 (mm)	要素1の応力(kg/cm ³)						
	材料 非 線 形	材料線形	材料 非線形	材料線形					
800	2.034	1.481	461.7	461.8					
1600	3.281	2.961	923.3	923.4					
3500	4.390	4.440	2019.0	2018.9					
5000	7.951	9.241	2883.5	2882.9					
5600	8.881	10.347	3229.1	3228.4					
6200	10.110	11. 453	3574.4	3573.7					

-43-

これらの結果より、以下の事が考察できる。

変位について材料非線形と材料線形と比較すると荷 重値によって変位量に違いが表われる。すなわち、P = 800kgの場合、材料非線形の変位の方が材料線形の 変位より大きく、P=5,000 kgの場合は、材料非線形 の方が大きくなる。これは、ケーブルのS-S曲線が、 応力の小さい状態では締結性であり、応力の大きい状 態ではひずみが急に増加するという複雑な動きのため であり、非線形解析値は線形解析値と一致しない。

要素の応力では、非線形解析値も線形解析値もそれ 程大きな差異は認められない。これは解析された結果 はあくまでつり合い状態であるため各要素が受ける応 力は必然的に荷重で決定しているという点にある。

(b). ケーブル補強空気膜構造モデル

この構造の解析では、膜の剛性とケーブルの剛性を 比べた場合、ケーブルの剛性の方がかなり高いため膜 の剛性を無視したケーブルのみで解析した。

今回の解析では、ニューマチック状態とサスペンション状態の2ケースに分け、常時使用状態と非常時状態について解析した。

XおよびY方向に対して対称であるので、¼のモデ

ルで解析を行い、荷重の種類として内圧と雪荷重を想 定し、ニューマチック状態の内圧75mmAq、サスペンシ ョン状態の雪荷重 225kg/miについて解析した。 ケーブルのモデルは、(a)トラスモデルと同様として 断面積は、3.13cmであり、ケーブル自重2.43kg/cml、 腹自重1.34kg/miである。ケーブルの線形モデルとし て公称されているは弾性率E=1400000 kg/cmlである。 図 7~図10 に各解析結果を示す。

-44-

内圧75mmAq時は、ケーブルの最大応力度は1360kg/. cmであり、各ケーブルとも弾性域に存在し、本解析結 果について以下の事がいえる。

- (1).変位量について、材料非線形解析は全ての節点に ついて線形解析を上まわっている。
- (2).変位量の材料非線形解析と線形解析の差は、平均 2.13cmで、最大3.10cmであり、2倍の差がある節 点が存在する。
- (3). 張力について、各部材とも材料非線形解析の方が 線形解析より小さい値となっいる。
- (4). 張力の材料非線形解析と線形解析の差は、平均で
 40kg、最大で81kgであるが、張力の1%程度である。

以上より、変位量を問題とする初期形状あるいは高 内圧時形状を求めるには、公称されるケーブルの弾性 率を一律に設定しての材料線形解析では精度が低く、 材料非線形解析が必要である。

雪荷重 225kg/mⁱ時は、ケーブルの最大応力度は、 4000kg/cmiに近く、塑性領域に存在し、本解析手法を 直接適用できないが、サスペンション状態の最終耐力 として重要な課題であるので1例を示した。

以下の事が考察できる。

雪荷重 225kg/㎡で破断応力を超えているケーブル (12,520kg以上)を図中数値を□で囲んだ。このよう に材料線形モデルでは雪荷重 225kg/㎡で破断を超え ている部材が出てくるが、材料非線形モデルでは破断 を超えた部材は出ていない。破断付近では、応力が変 化しないで、伸びだけが生じるため荷重が全ての要素 に再分配されるためだと考えられる。このような変化 は、材料線形解析では表現できず、極限状態の構造解 析において材料非線形解析が必要であることを示して いる。

7. まとめ

ケーブルネット構造の材料非線形問題を通して考え ると、ケーブル部材のS-S曲線は理論で求めたモデ ル式で実際の部材の挙動に十分追従している。

また、このモデル式は連続性を持っているので、N ewton 法での幾何学的非線形との組み合わせに問題は 生じなかった。 現在の材料線形解析では、得られるケーブル張力を 想定し、その張力に見合う弾性率を各部材に異なった 値を決める必要があるが、本解析手法により精度の高 い解析結果が弾性率の想定を行わないで得ることがで きた。

各解析モデルの結果をみると、幾何学的非線形性が 小さいモデルでは、材料非線形と材料線形とは大きな 差異はないが、幾何学的非線形性が高いモデルでは、 各節点の変位に違いが表われる。

今回取り上げた材料非線形問題は、ケーブルの応力 - ひずみ関係のモデル化により、実際に即した解析結 果を得ることを目的としているが、有限要素法におけ る材料非線形と幾何学的非線形の定式化とともにケー ブルネット構造について信頼できる精度が得られた。

参考文献

- O. C. Zienkiewicz 著:マトリックス有限要素 法 培風館
- 2). 戸川隼人著:有限要素法概論、培風館
- 小堀為雄・吉田博著:有限要素法による構造解析 プログラム 丸善
- 大地羊三著:有限要素法とその応用数学ライブラ リー38 森北出版
- 5). 日本鋼構造協会編: 吊構造 コロナ社
- 6). 東京製鋼:ワイヤーロープの常識
- Richard C. Heusley and Jamal J. Azar: Com puter Analysis of Nonlinear Truss Structure ASCE June 1968 ST6
- Brian J. Sullivan and Steven C. Batterman : Nonlinear Static and Dynamic Deformation of Viscoelastic Cables ASCE June 1980 EM3
- 9). D. C. Zienkiewicz, S. Valliappan and I. P. King : Stress Analysis of Rock as a "No Tension" Material GEOTECHNIQUE 18.
- 10).石井一夫: 膜曲面上の測地線ケーブルネットについて、日本建築学会大会学術講演梗概集、昭和48 年
- 11). 坪田張二、相澤恂:ケーブルネット構造物の施工
 時解析、日本建築学会論文報告集第 253号、昭和 52年

-45-