膜構造の形状解析の線形理論について

安宅信行

概

要

膜構造やケーブル構造の初期の釣り合い形状を見いだす問題は形状解析問題と言われ、非線形 の定式化が行われ、これを繰り返し演算によって大型計算機を用いて解かれてきた。しかし、 問題によっては必ずしも非線形計算をする必要のない問題も数多く存在する。特に、最近では パーソナルコンピューターの普及によって身近なところでこれらの機器を利用できるようにな ってきた、しかし、これらの機器も記憶容量や計算時間の点で、まだ多くの制約から、より簡 略な計算法が望まれる。形状解析問題についてもその意味において線形計算法の確立が望まれ ている。そこで、本論文では線形理論の可能性と0次弾性体の概念を導入することによって合 理的な線形理論の展開を行なう。また、ここで求めた線形理論とこれまで用いられている非線 形理論との関係を明らかにする。

1. はじめに

テンション構造の形状解析問題はこれまで非線形問 題として扱われてきており、その解析手法は一応定着 してきている。しかし、形状解析は設計の基本の釣合 形状を決定するためにエスキス段階から何度か形状解 析を行う必要がある。ここでは

- (1)多少の誤差があっても、解析が容易で手軽に結果 が得られること。すなわち、パーソナルコンピュ ーターなどを使用して短時間に処理結果が得られ、 それをグラフィツクな表現で表示することができ ること。
- (2) 一度得られた結果を用いて、これに倍率を乗ずる ことによって異なった条件の形態を容易に類推す ることができること。

などが求められている。

このような要求に対し、線形理論に基ずく解析法は 適しているが、非線形理論に基ずく解析法は適してい ない。しかし、膜構造の形状解析の線形理論、特に数 値解析的な解法はこれまであまり検討されてきていな いようである。

非線形理論が用いられる最大の理由は本来線形では 表現できない非線形現象を記述するためと、計算精度 を高めるためとが考えられる。

たとえば、大変形を伴う構造物の応力・変形解析お いて非線形項を考慮することは、計算精度を高めるこ とよりも、この項を考慮しなければ解析できないため である。

一方、形状解析において非線形項を考慮することは、 後に示すように非線形性状を記述するためというより も、むしろ、計算精度を高めることが目的であり、こ の項がなければ解析できないということはない。

しかし、設計のエスキス段階では精度よりも曲面を 概括的に早くとらえることの方が重要であり、これに よって定まった曲面の精度を上げたければ、必要に応 じて非線形解析を行えばよい、その際、線形解の曲面 を初期値として用いればよい。

そこで、本論文では、上述の諸条件をを考慮して、 膜構造の形状解析の線形理論について考察する。

横浜国立大学 工学部 建設学科 助手

2. 職権造の形状解析の線形理論

2.1 偏平な曲面

理論を分かりやすくするために、先ず偏平な曲面に ついて検討する。

形態安定後の曲面の任意の点の位置ベクトルを次の ように表す。

 $r = x e_1 + y e_2 + z (x, y) e_3$

ここに、

- r:形態安定後の曲面の任意の点の位置ベク

このとき、内圧pを受け、膜張力nの等応力の曲面を 決定する汎関数は次のように表される。

$$\Phi = \iint \left\{ n \sqrt{A} + p z (x, y) \right\} dx dy$$

 $z z z z, \qquad \sqrt{A} = \sqrt{1 + z_x^2 + z_y^2}$ $z_x = \partial z / \partial x$ $z_u = \partial z / \partial y$

は形態安定後の膜の面積要素を意味する。また、ここ で、変分を受ける独立な量はZである。

この式を通常の有限要素法の手法に基ずいて定式化 することができる、この解法は一節点一自由度となり、 これまでの一節点三自由度のものとは異なりかなり解 き易くなっている。これは一種の不等間差分法的な解 き方になつている。しかし、これらの基本方程式はい ずれも非線形の方程式になっている。

さて、この汎関数を停留にする z は次の Euler-Lagrange の方程式を満足する。

$$n \quad \frac{\bigtriangleup z + L (z)}{\sqrt{1 + z_x^2 + z_y^2}} = p$$

zzk, $\Delta z =$ $\Delta z = z_x^2 + z_y^2$ L (Z) = $Z_{x^{2}}Z_{yy} - 2Z_{x}Z_{y}Z_{yy}$ $+ Z_{u}^{2} Z_{vv}$

> $z_{xx} = \partial^{2} z / \partial x \partial x$ $Z_{yy} = \partial^{2} Z / \partial y \partial y$ $z_{xy} = \partial^2 z / \partial x \partial y$

これは、非線形の方程式となる。文献 4) ではこれを 差分法を用いて解いている。

ここで、高次の項を無視し、線形化すると次のよう ·····(2.1) な Poisson の方程式が得られる。

$$\Delta z = p / n$$
(2.4)

x, y, z: 直交座標系とする。 また、内圧pが存在しなければ、

$$\bigtriangleup z = 0 \qquad \cdots \cdots (2, 5)$$

となり、これは Raplace の方程式となっている。 これらの式は古くからポテンシャル問題として応用数 学の分野で解析的にもまた、数値的にもよく研究され ている。

> さて、この問題は有限要素法でも、また、境界要素 法でも解けることが分かつている。以下にこれを簡単 に定式化しておく。ただし、 Raplace の方程式は Poisson の方程式の特殊な場合に相当し、この中に含 まれるので、ここでは Poisson の方程式のについて のみ検討する。

Poisson の方程式の有限要素法による解法

Poisson の方程式を基にしてこの汎関数を求め ると一般に、次のように表される。

$$\Phi = \int \int \left\{ (1/2) n [z_{*}^{2} + z_{*}^{2}] + p z (x, y) \right\} dx dy$$
....(2, 6)

この汎関数を停留にする Euler-Lagrange の方程 式は Poisson の方程式となる。

さて、有限要素法ではこれを基にして定式化される。

このとき、基本方程式は線形の連立方程式がえられる。

(2) Poisson の方程式の境界要素法による解法

Poisson の方程式(2.4)とΓ」境界における境界条件

$$z = z_{\alpha} \qquad \cdots (2,7)$$

および、 Г 2 境界における境界条件

$$q = q_{\alpha} \qquad \cdots (2,7)$$

に対する重み付き残差表示は

$$-\int \int (p \neq n) w dx dy$$

+
$$\int \int [z_{x}^{2} + z_{v}^{2}] w dx dy$$

=
$$\int [q - q_{v}] w d\Gamma_{2}$$

-
$$\int [z - z_{v}] (\partial w \neq \partial \nu) d\Gamma_{1}$$

....(2.8)

ここに、w:重み関数 ν:境界での法線方向) Γ₁: zが規定されている境界 Γ₁: q = 0 z / 0 νが規定されている境界

式(2.8)の第二項を二回部分積分すると、

$$- \iint (p \neq n) w dx dy$$

$$+ \iint [w_{x^{2}} + w_{v^{2}}] z dx dy$$

$$= - \int q_{e} w d\Gamma_{e} - \int q w d\Gamma_{1}$$

$$+ \int z (\partial w \neq \partial \nu) d\Gamma_{2}$$

$$+ \int z_{e} (\partial w \neq \partial \nu) d\Gamma_{1}$$
....(2.8)

となる。ここで、次の方程式

$$\Delta \mathbf{Z}^* = \boldsymbol{\delta} \,, \qquad \qquad \dots \dots (2, 9) \,.$$

を満足する解を基本解Z・とする、いま、重み関数wの 代わりにこの基本解Z・を用いると、

$$\int \int \left[w_{x}^{2} + w_{y}^{2} \right] z \, dx \, dy$$
$$= -\int \int \delta_{i} z \, dx \, dy = -z_{i}$$

 $\dots \dots \dots \dots (2, 10)$

ここに、Z: は単位ボテンシャルを作用させた点にお ける座標関数Zの値である。

ここで、基本解は次のようになる。

$$z = (1/2\pi) l n (1/r) \cdots (2.11)$$

このようにすることによって、最終的には

$$\mathbf{a}_{1} \mathbf{z}_{1} + \int \int (\mathbf{p} / \mathbf{n}) \mathbf{w} \, d\mathbf{x} \, d\mathbf{y}$$
$$+ \int \mathbf{z} \mathbf{q} \cdot d\Gamma_{2} + \int \mathbf{z}_{0} \mathbf{q} \cdot d\Gamma_{1}$$
$$= \int \mathbf{q}_{0} \mathbf{z} \cdot d\Gamma_{2} + \int \mathbf{q} \mathbf{z} \cdot d\Gamma_{1}$$
$$\cdots (2.12)$$

ここで、

a_i = { 1 : iが領域内のとき 1 / 2 : iが境界上のとき 0 : iが領域外のとき

となる。これによって荷重項以外は全て境界の積分に 変換されたことになる。これを用いて境界を要素分割 することにより離散化される。すなわち、

$$(1/2) z_{1} + \sum \int \int (p \neq n) w d x d y$$
$$+ \sum \int z q \cdot d \Gamma_{2} + \sum \int z_{\alpha} q \cdot d \Gamma_{1}$$
$$= \sum \int q_{\alpha} z \cdot d \Gamma_{2} + \sum \int q z \cdot d \Gamma_{1}$$
$$\dots (2, 13)$$

となる。これを整理すると、各境界点iに対して、次 のようになる。

$${\rm B}~,~+~\sum_{j}{\rm H}~,~{\rm z}~,~=~\sum_{j}{\rm G}~,~{\rm q}~,$$

...(2.14)

-21-

ここに、 B : 荷重項

となる。未知量が全て左辺にくるように並べ換えて、

$$\mathbf{A} \mathbf{X} = \mathbf{F} \qquad \cdots (2, 15)$$

ここに、Fの項には荷重項Bを含んでいる。

なお、式(2,15)は線形の連立方程式になっている。 このように境界上で Z, qの値が定まると、領域内の 任意の点1の座標値Z」は次式より決定される。

$$z_{i} = \sum_{j} G_{i+1} q_{i} - \sum_{j} H_{i+1} z_{i} - B_{i}$$

....(2.16)

一般曲面(膜構造)の線形理論 2.2

これまで述べられている形状解析の手法は簡便であ り、容易に結果が得られる点で優れている。しかし、 x y は固定されており、もし、境界がこれらの方 向に移動する場合、たとえば、境界にケーブルがは入 っているような場合には、境界点は x y 方向に 移動するので、上で説明したような手法は適用するこ とはできない。このような問題にも広く適用できる一 般的な手法を考えてみよう。

文献 5 の中で説明しているように、形状解析問題 は0次弾性体の静的釣合問題あるいは定常問題に相当 することがわかっているから、ここでは0次弾性の連 続体の静的釣合問題として解析を進める。 0次弾性体の単位質量当りに蓄えられるひずみエネル

ギーWは次のようになる。

$$W = H^{ab} \gamma_{ab}$$

= $H^{11} \gamma_{11} + H^{22} \gamma_{22} + 2 H^{12} \gamma_{12}$
....(2.17)

ここに、 H^{ab} : 0次弾性係数(既知量) Yab : ひずみ

このとき、ひずみは形状(座標)を用いて次のように このとき、最終曲面の面積要素は

表される。

$$\gamma_{ab} = (1/2) (A_{ab} - \delta_{ab})$$

 $\mathbb{ZZ}[\mathcal{L}, \delta_{ab} = 1 \quad (a = b)$ = O (a ≠ b)

は Kronecker's Delta である。また、Aab は最終 的に安定した曲面の基本計量テンソルで、座標関数を 用いて次のように表現される。

$$A_{11} = X_{x}^{2} + Y_{x}^{2} + Z_{x}^{2}$$

$$A_{22} = X_{y}^{2} + Y_{y}^{2} + Z_{y}^{2}$$

$$A_{12} = X_{x}X_{y} + Y_{x}Y_{y} + Z_{x}Z_{y}$$
(2.10)

····(2, 19)

ここに、

 $X_x = (\partial X / \partial x) \quad X_y = (\partial X / \partial y)$ $Y_{x} = (\partial Y / \partial x) \quad Y_{y} = (\partial Y / \partial y)$ $Z_x = (\partial Z / \partial x) \quad Z_y = (\partial Z / \partial y)$

このとき、ひずみは次のようになる。

 $\gamma_{11} = (1/2) (X_x^2 + Y_x^2 + Z_x^2 - 1)$ $\gamma_{22} = (1/2) (X_{u}^{2} + Y_{u}^{2} + Z_{u}^{2} - 1)$ $\gamma_{12} = (1/2) (X_{x}X_{y} + Y_{x}Y_{y} + Z_{x}Z_{y})$ $\dots \dots \dots \dots \dots (2, 21)$

なお、このとき、初期の曲面は平面で、その位置ベク トルは次のように

$$\mathbf{r}_{\theta} = \mathbf{x} \mathbf{e}_{\theta 1} + \mathbf{y} \mathbf{e}_{\theta 2} \qquad \cdots \cdots (2, 22)$$

表し、また、最終曲面は未知の形状(座標)X Y Z をパラメーター x y を用いて表すとすると、その ときの位置ベクトルは次のようになっている。

> $r = X(x, y) e_1 + Y(x, y) e_2$ $+ Z (x, y) e_3 \cdots (2.23)$

$$\sqrt{A} = \sqrt{A_{11}A_{22} - (A_{12})^2}$$
.....(2.24)

ここで、式(2.19)を用いて計算すると、

$$A = (Y_{x}Z_{v} + Z_{x}Y_{v})^{2} + (Z_{x}X_{v} + X_{x}Z_{v})^{2} + (X_{x}Y_{v} + Y_{x}X_{v})^{2} + (X_{x}Y_{v} + Y_{x}X_{v})^{2} + (2.25)$$

となる。それゆえ、式(2.17)で与えられる0次弾性体 の単位質量当りに蓄えられるひずみエネルギーWは形 状(座標)を用いて次のように表すことができる。

 $W = H^{ab} \gamma_{ab}$

 $= H^{11} \gamma_{11} + H^{22} \gamma_{22} + 2 H^{12} \gamma_{12}$

 $= (1/2) \{ H^{11} (X_{x}^{2} + Y_{x}^{2} + Z_{x}^{2} - 1) \\ + H^{22} (X_{y}^{2} + Y_{y}^{2} + Z_{y}^{2} - 1) \\ + 2 H^{12} (X_{x}X_{y} + Y_{x}Y_{y} + Z_{x}Z_{y}) \} \\ \cdots (2, 26)$

さて、全ひずみエネルギーはこれを最終的に得られる 曲面の全領域について積分することによって得られ、

$$\Phi_{s} = \iint W \sqrt{A} dx dy$$
$$= \iint H^{ab} \gamma_{ab} \sqrt{A} dx dy \qquad \dots (2, 27)$$

一方、圧力ポテンシャルとして、

$$\Phi_{\mathfrak{p}} = \iint \mathfrak{p} \, \mathbf{n} \cdot \mathbf{r} \, \sqrt{\mathbf{A}} \, \mathbf{d} \, \mathbf{x} \, \mathbf{d} \, \mathbf{y} \qquad \cdots (2.28)$$

を用いる、ここに、 n は最終曲面の単位法線ベクト ルを表している。これは内圧あるいは外圧を受ける膜 構造、すなわち、空気膜構造の圧力ポテンシャルとし て用いられる。

それゆえ、形状解析に用いる停留ポテンシャルエネ ルギーの原理は次のようになる。

 $\delta \Phi = 0$

ここに、全ポテンシャルエネルギーは

$$\Phi = \Phi_{s} + \Phi_{o}$$

$$= \iint H^{ab} \gamma_{ab} \sqrt{A} dx dy$$

$$+ \iint p n \cdot r \sqrt{A} dx dy$$
....(2.30)

として表される。ここで、変分を受ける独立な関数は γ_{ab} および A に含まれる形状(座標)X Y Zで ある。

さて、式(2.30)から導かれる基本方程式はいずれも 非線形の方程式となるが、ここで、固体の力学でよく 用いられる簡略化の手法を用いる。すなわち、

$$h^{ab} = H^{ab} \sqrt{A} \qquad \cdots (2, 31)$$

 $p_{\theta} = p \sqrt{A} \cdots (2, 32)$

と置く、この置き換えは 2nd. kind Piola-Kirchhoff 応力の定義に対応するものである。また、最終曲面の 単位法線ベクトルを次のように置く、

$$\mathbf{n} = \mathbf{e}_3 \qquad \cdots (2, 33)$$

このような置き換えによって、式(2.30)は次のように なる。

$$\Phi_{L} = \iint h^{ab} \gamma_{ab} dx dy$$
$$+ \iint p_{a} Z dx dy$$

....(2.34)

ここで、変分を受ける独立な関数は γ₃。に含まれる 形状(座標) X Y Zである。

さて、式(2.34)から導かれる基本方程式はいずれも 線形の方程式となる。

...(2.29)

2.3 一般曲線(ケーブル構造)の線形理論

ー般曲面の場合と同様にして、一般曲線の線形理論 を導いておこう

初期の曲線は直線で、その位置ベクトルを次のよう に表す、

$$\mathbf{r}_{\theta} = \mathbf{X} \mathbf{e}_{\theta 1} \qquad \cdots \cdots (2.35$$

また、最終曲線は未知の形状(座標)X Y Zをパラ メーター x を用いて表すとすると、そのときの位 置ベクトルは次のようになっている。

$$\mathbf{r} = \mathbf{X} (\mathbf{x}) \mathbf{e}_1 + \mathbf{Y} (\mathbf{x}) \mathbf{e}_2$$

+ Z (x) \mathbf{e}_3 (2.36)

このとき、最終的に安定した曲面の基本計量テンソル L₁₁は、座標関数を用いて次のように表現される。

$$L_{11} = X_{x}^{2} + Y_{x}^{2} + Z_{x}^{2}$$

ここに、 X_× Y_× Z_× は式(2.20)で与えられる。 また、最終曲線の線素は

$$\int \mathbf{L} = \sqrt{\mathbf{L}_{11}} \qquad \dots \dots (2.38)$$

となる。このとき、ひずみは形状(座標)を用いて次 のように表される。

$$\gamma_{11} = (1/2) (A_{11} - \delta_{11})$$

= (1/2) (X_x² + Y_x² + Z_x² - 1)
.....(2.39)

それゆえ、0次弾性体の単位質量当りに蓄えられるひ ずみエネルギーWは形状(座標)を用いて次のように 表すことができる。

$$W = {}_{\circ} H^{11} \gamma_{11}$$

= (1/2) { $_{\circ} H^{11}$ ($X_{*}^{2} + Y_{*}^{2} + Z_{*}^{2} - 1$)
....(2.40)

ここに、。H¹¹ は空間曲線(ケーブル)のOじ弾性係 数である。

さて、全ひずみエネルギーはこれを最終的な曲線の全 領域について積分することによって得られ、

$$\Phi_{c} = \int W \sqrt{L} d x$$
$$= \int c H^{11} \gamma_{11} \sqrt{L} d x \qquad \dots (2, 41)$$

ここで、変分を受ける独立な関数は γ₁₁ および L に含まれる形状(座標)X Y Zである。

さて、式(2.41)から導かれる基本方程式はいずれも 非線形の方程式となる。ここでも、曲面の場合と同様 に、

$$_{\circ} h^{ab} = _{\circ} H^{ab} \sqrt{L} \cdots (2, 42)$$

の置き換えを行えば、式(2.41)は次のようになる。

$$\Phi_{\circ} = \int_{\circ} h^{11} \gamma_{11} d x \qquad \cdots (2, 43)$$

ここで、変分を受ける独立な関数は γ₁₁ に含まれる 形状(座標) X Y Zである。

さて、式(2.41)から導かれる基本方程式はいずれも 線形の方程式となる。

$$\Phi = \Phi_{L} + \Phi_{c}$$

$$= \int \int h^{ab} \gamma_{ab} dx dy$$
$$+ \int \int p_{0} Z dx dy$$
$$+ \int _{0} h^{11} \gamma_{11} dx$$

...(2, 44)

-24-

ここで、変分を受ける独立な関数は γ_{sb} に含まれる 形状(座標) X Y Zである。

さて、式(2.44)から導かれる基本方程式はいずれも 線形の方程式となる。これがケーブル補強の膜構造の 形状解析に用いる基本方程式になる。

3. 線形理論の離散化とその定式

3.1 汎関数の離散化

汎関数が決定されたので、その離散化は通常の有限 要素法に準じた手法で定式化される。まず、式(2.44) は次のように離散化される。なお、節点外力による外 力ポテンシャルを付加する。

$$\Phi = \sum \int \int h^{ab} \gamma_{ab} dx dy$$

$$+ \sum \int c h^{11} \gamma_{11} dx$$

$$+ \sum \int \int p_{a} Z dx dy$$

$$- \sum (F_{x}^{a} X_{m} + F_{u}^{m} Y_{m} + F_{z}^{m} Z_{m})$$

$$\dots (3.1)$$

ここで、変分を受ける独立な関数は γ_{ab} に含まれる 要素節点の形状(座標) X_k Y_k Z_kである。 ここで、

3.2 三角形膜要素

要素内の任意の点を全体座標系から測ったときの座 標を(XYZ)とする。これを要素に埋め込まれ た局所座標系(Xy)の線形関数として次のように 表す。

$$X = \alpha^{1} + \alpha^{2} \mathbf{x} + \alpha_{3} \mathbf{y}$$

$$Y = \alpha^{4} + \alpha^{5} \mathbf{x} + \alpha_{6} \mathbf{y}$$

$$Z = \alpha^{7} + \alpha^{8} \mathbf{x} + \alpha_{9} \mathbf{y}$$
.....(3.2)

 α¹ α₂,..., α⁹ は三角形要素の節点番号 m の座

 標値 X_m Y_m Z_m (m=i j k) を用いて次のように

 定義される。

 $\alpha^{1} = (a^{1}X_{i} + a^{2}X_{i} + a^{3}X_{k}) / 2 s$ $\alpha^{2} = (b^{1}X_{i} + b^{2}X_{i} + b^{3}X_{k}) / 2 s$ $\alpha^{3} = (c^{1}X_{i} + c^{2}X_{i} + c^{3}X_{k}) / 2 s$ $\alpha^{4} = (a^{1}Y_{i} + a^{2}Y_{i} + a^{3}Y_{k}) / 2 s$ $\alpha^{5} = (b^{1}Y_{i} + b^{2}Y_{i} + b^{3}Y_{k}) / 2 s$ $\alpha^{6} = (c^{1}Y_{i} + c^{2}Y_{i} + c^{3}Y_{k}) / 2 s$ $\alpha^{7} = (a^{1}Z_{i} + a^{2}Z_{i} + a^{3}Z_{k}) / 2 s$ $\alpha^{8} = (b^{1}Z_{i} + b^{2}Z_{i} + b^{3}Z_{k}) / 2 s$ $\alpha^{9} = (c^{1}Z_{i} + c^{2}Z_{i} + c^{3}Z_{k}) / 2 s$ $\cdots (3.3)$

$$a^{1} = x_{i} y_{k} - x_{k} y_{i}$$

$$a^{2} = x_{k} y_{i} - x_{i} y_{k}$$

$$a^{3} = x_{i} y_{i} - x_{i} y_{i}$$

$$b^{1} = y_{i} - y_{k} \qquad c^{1} = x_{k} - x_{i}$$

$$b^{2} = y_{k} - y_{i} \qquad c^{2} = x_{i} - x_{k}$$

$$b^{3} = y_{i} - y_{i} \qquad c^{3} = x_{i} - x_{i}$$
.......(3, 4)

ここに、 x " y " (m = 1 2 3) は初期の三角形要素 の節点座標値である。また、 s は次式で定義される三 角形要素の面積である。

$$2 s = \begin{bmatrix} 1 & x_{1} & y_{1} \\ 1 & x_{1} & y_{1} \\ 1 & x_{k} & y_{k} \end{bmatrix}$$
$$= a^{1} + a^{2} + a^{3} \qquad \dots \dots \dots (3, 5)$$

このように定義すると、XYZのXyについての偏微 分は次のように定義される。

 $X_{x} = (\partial X / \partial x) = \alpha_{2}$ $Y_{x} = (\partial Y / \partial x) = \alpha_{5}$ $Z_{x} = (\partial Z / \partial x) = \alpha^{8}$

 $X_{\nu} = (\partial X \nearrow \partial y) = \alpha^{3}$

 $Y_{\mu} = (\partial Y / \partial y) = \alpha^{6}$ $Z_{\mu} = (\partial Z / \partial y) = \alpha^{9}$

それゆえ、式(2.21)のひずみは次のようになる。

 $\gamma_{11} = (1/2) (\alpha^2 \alpha^2 + \alpha^5 \alpha^5 + \alpha^8 \alpha^8 - 1)$ $\gamma_{22} = (1/2) (\alpha^3 \alpha^3 + \alpha^6 \alpha^6 + \alpha^9 \alpha^9 - 1)$ $\gamma_{12} = (1/2) \left(\alpha^{2} \alpha^{3} + \alpha^{5} \alpha^{6} + \alpha^{8} \alpha^{9} \right)$ (3,7)

3.3 二節点ケーブル要素

三角形膜要素と同様に、要素内の任意の点を全体座 標系から測ったときの座標を(X Y Z)とする。 これを要素に埋め込まれた局所座標系 (x)の線形関 数として次のように表す。

	$X = \beta^{1} + \beta^{2} x$	
	$Y = \beta^3 + \beta^4 x$	
	$Z = \beta^{5} + \beta^{6} x$	
		(3.8)

 β^1 β_2 β^6 はケーブル要素の節点番号 m の 座標値 X "Y "Z "(m=ij)を用いて次のように 定義される。

> $\beta^{1} = (a^{1}X_{1} + a^{2}X_{1}) / L$ $\beta^{2} = (b^{1}X_{1} + b^{2}X_{1}) / L$

 $\beta^{3} = (a^{1}Y_{1} + a^{2}Y_{1}) / L$ $\beta^{4} = (b^{1}Y_{1} + b^{2}Y_{1}) / L$

$$\beta^{5} = (a^{1}Z_{i} + a^{2}Z_{i}) \nearrow L$$

$$\beta^{6} = (b^{1}Z_{i} + b^{2}Z_{i}) \nearrow L$$

.....(3,9)

ここに、

 $a^{2} = -x_{i}$ $a^1 = x$ $b^{1} = -1$ $b^{2} = 1$(3.10)

ここに、 x m y m (m = 1 2 3) は初期のケーブル要

素の節点座標値である。また、Lは次式で定義される ケーブルの長さである。

 $L = x_1 - x_2 = a^1 + a^2 \cdots (3, 11)$

このように定義すると、Х Ү 乙の x についての偏 微分は次のように定義される。

 $X_{\times} = (\partial X / \partial x) = \beta_2$ $Y_x = (\partial Y / \partial x) = \beta_4$ $Z_{x} = (\partial Z / \partial x) = \beta^{6}$

それゆえ、式(2.39)のひずみは次のようになる。

4. 線形理論の基本方程式

離散系の汎関数(3,1)に式(3,7)および(3,13)を代入 して得られる汎関数は節点座標を未知数とした二次関 数となっている。基本方程式はこの汎関数を節点座標 に関する停留条件より得られる。すなわち、

$$f_{x^{a}} = \frac{\partial}{\partial X^{a}} = 0$$

$$f_{y^{a}} = \frac{\partial}{\partial Y^{a}} = 0 \qquad \dots \dots \dots (4, 1)$$

$$f_{z^{a}} = \frac{\partial}{\partial Z^{a}} = 0$$

ここに、添え字 (q = 1 2 3総節点数) これらの方程式はいずれも節点座標についての線形方 程式となっている。

5. 数值計算例

ここに、数値計算例として、上述 2.4 節で説明し た手法による解法で解いた例を示す。

なお、使用した計算機はNEC-9801 vm2を 用いた。また、使用言語はMS-DOS上の N88basic である。

-27-

Fig. 3 周辺固定のサスペンション型膜構造

(a) 形態安定後の等高線図

(b) 正立面図

(e) 初期の平面メッシュ分割および境界条件

(d) 透視図

Fig. 4 周辺固定のサスペンション型膜構造

(c) 透視図

(d) 斜(45度方向)立面図

(a) 形態安定後の等高線図

(b) 正立面図

6.まとめ

6.1 膜構造の線形解析の可能性として、Laplace 3) Haug, E. and Powell, G.H. (1971) あるいは Poisson の方程式を有限要素法で解く方法 を示した。この方法は一節点一自由度と未知数の数を 通常の有限要素法の三分の一にすることができ極めて 有効であるが、境界は固定式となる。

6.2 次に Laplace あるいは Poisson の方程式を 境界要素法で解く方法を示した。この手法は境界のみ を要素分割すればよく未知数は極端に少なくすること ができる、また、領域の任意の点の座標値を必要なだ け求められるメリットがあるが、係数マトリックスは 有限要素法の場合のようにスパースなマトリックスと はならないので、未知数は少なくとも、実質的な記憶 容量の節約にはならない。また、この場合も境界は固 定である。 しかし、この手法についてはこれまであ まり議論されておらず、今後の研究の発展によっては もっと広い可能性を含んでいるかも知れない。

6.3 一節点三自由度を持つ一般的な形状解析の線 形理論を示した。この手法は線形なので解は確実に求 めることができる。ここで導入される〇次弾性係数は 2nd, Piola Kirchhoff 応力の意味を持つている。

6.4 最後に、ここに示した線形理論は計算の便宜 上導入したものであり、厳密解に対し誤差を含むこと はやむおえないことである。そのため、今後、この理 論を発展させるためには、さらに厳密な誤差の検討が 必要であると考えている。

REFERENCES

- 1) Oden J.T. (1967)
- "Numerical Analysis of Nonlinear Pneumatic Structures" Proc. of the 1st International Colloquium on Pneumatic Structures Stuttgart 2) Haug, E. and Powell. G.H. (1971)
- "Finite Element Analysis of Nonlinear Membrane Structures" I.A.S.S. Pacific

Symposium Part II on Tension Structures and Space Frames, Tokyo and Kyoto,

- "Analytical Shape Finding for Cable Nets" I.A.S.S Pacific Symposium Part II on Tension Structures and Space Frames. Tokyo and Kyoto
- 4) Ishii, k. (1982)

"Structural Design of Air-Supported Structure " Bulletin of the Faculty of Engineering, Yokohama National University. Vol.31

5) Ataka, N. (1987)

- "On Configuration Theory Based on Mechanics of Continua", Proc. of the 2nd. Japan-Korean Joint Colloquium on Shell and Spatial Structures, Institute of industrial science, Univ. of Tokyo
- 6) Elsgolc L.E. (1962) "Calculus of Variations" Pregamon Press.
- 7) Washizu K. (1982) "Variational Methods in Blasticity and
- Plasticity" Pergamon Press 3rd. edition 8) Otto F. (1969)
- "Tensile Structures" Vol. I., Vol. II MIT Press 9) Eringen A.C. (1962)
 - "Nonlinear Theory of Continuous Media" McGraw-Hill
- 10) Oden J.T. (1972)

"Finite Elements of Nonlinear Continua" McGraw-Hill

- 11) Finlayson B. A. (1972) "The Method of Weighted Residuals and Variational Principles" Academic Press
- 12) Brebbia C. A. (1984)
- "Boundary Blement Techniques in Computer-Aided Engineering" Martinus Nijhoff Publishers
- 13) Jaswon M. A. and Symm G.T. (1977) "Integral Equation Methods in Potential Theory and Elastostatics" Academic Press

14) Brebbia C. A. and Walker S. 田中正隆 田中喜久昭 共訳 (1981) "境界要素法基礎と応用" 培風館